Neuro-inspired computing chips
The rapid development of artificial intelligence (AI) demands the rapid development of
domain-specific hardware specifically designed for AI applications. Neuro-inspired …
domain-specific hardware specifically designed for AI applications. Neuro-inspired …
Towards spike-based machine intelligence with neuromorphic computing
Guided by brain-like 'spiking'computational frameworks, neuromorphic computing—brain-
inspired computing for machine intelligence—promises to realize artificial intelligence while …
inspired computing for machine intelligence—promises to realize artificial intelligence while …
Model compression and hardware acceleration for neural networks: A comprehensive survey
Domain-specific hardware is becoming a promising topic in the backdrop of improvement
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
slow down for general-purpose processors due to the foreseeable end of Moore's Law …
Efficient acceleration of deep learning inference on resource-constrained edge devices: A review
Successful integration of deep neural networks (DNNs) or deep learning (DL) has resulted
in breakthroughs in many areas. However, deploying these highly accurate models for data …
in breakthroughs in many areas. However, deploying these highly accurate models for data …
A full spectrum of computing-in-memory technologies
Computing in memory (CIM) could be used to overcome the von Neumann bottleneck and to
provide sustainable improvements in computing throughput and energy efficiency …
provide sustainable improvements in computing throughput and energy efficiency …
PUMA: A programmable ultra-efficient memristor-based accelerator for machine learning inference
Memristor crossbars are circuits capable of performing analog matrix-vector multiplications,
overcoming the fundamental energy efficiency limitations of digital logic. They have been …
overcoming the fundamental energy efficiency limitations of digital logic. They have been …
Neuro-inspired computing with emerging nonvolatile memorys
S Yu - Proceedings of the IEEE, 2018 - ieeexplore.ieee.org
This comprehensive review summarizes state of the art, challenges, and prospects of the
neuro-inspired computing with emerging nonvolatile memory devices. First, we discuss the …
neuro-inspired computing with emerging nonvolatile memory devices. First, we discuss the …
In-memory computing: Advances and prospects
IMC has the potential to address a critical and foundational challenge affecting computing
platforms today-that is, the high energy and delay costs of moving data and accessing data …
platforms today-that is, the high energy and delay costs of moving data and accessing data …
Roadmap on emerging hardware and technology for machine learning
Recent progress in artificial intelligence is largely attributed to the rapid development of
machine learning, especially in the algorithm and neural network models. However, it is the …
machine learning, especially in the algorithm and neural network models. However, it is the …
[LIBRO][B] Efficient processing of deep neural networks
This book provides a structured treatment of the key principles and techniques for enabling
efficient processing of deep neural networks (DNNs). DNNs are currently widely used for …
efficient processing of deep neural networks (DNNs). DNNs are currently widely used for …