Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Foundation Models Defining a New Era in Vision: a Survey and Outlook

M Awais, M Naseer, S Khan, RM Anwer… - … on Pattern Analysis …, 2025 - ieeexplore.ieee.org
Vision systems that see and reason about the compositional nature of visual scenes are
fundamental to understanding our world. The complex relations between objects and their …

Segment anything in medical images

J Ma, Y He, F Li, L Han, C You, B Wang - Nature Communications, 2024 - nature.com
Medical image segmentation is a critical component in clinical practice, facilitating accurate
diagnosis, treatment planning, and disease monitoring. However, existing methods, often …

Segment anything model for medical images?

Y Huang, X Yang, L Liu, H Zhou, A Chang, X Zhou… - Medical Image …, 2024 - Elsevier
Abstract The Segment Anything Model (SAM) is the first foundation model for general image
segmentation. It has achieved impressive results on various natural image segmentation …

Advances in medical image analysis with vision transformers: a comprehensive review

R Azad, A Kazerouni, M Heidari, EK Aghdam… - Medical Image …, 2024 - Elsevier
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …

Transformers in medical imaging: A survey

F Shamshad, S Khan, SW Zamir, MH Khan… - Medical Image …, 2023 - Elsevier
Following unprecedented success on the natural language tasks, Transformers have been
successfully applied to several computer vision problems, achieving state-of-the-art results …

Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation

R Jiao, Y Zhang, L Ding, B Xue, J Zhang, R Cai… - Computers in Biology …, 2024 - Elsevier
Medical image segmentation is a fundamental and critical step in many image-guided
clinical approaches. Recent success of deep learning-based segmentation methods usually …

Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer

H Wang, P Cao, J Wang, OR Zaiane - Proceedings of the AAAI …, 2022 - ojs.aaai.org
Most recent semantic segmentation methods adopt a U-Net framework with an encoder-
decoder architecture. It is still challenging for U-Net with a simple skip connection scheme to …

[HTML][HTML] Transformers in medical image analysis

K He, C Gan, Z Li, I Rekik, Z Yin, W Ji, Y Gao, Q Wang… - Intelligent …, 2023 - Elsevier
Transformers have dominated the field of natural language processing and have recently
made an impact in the area of computer vision. In the field of medical image analysis …

The medical segmentation decathlon

M Antonelli, A Reinke, S Bakas, K Farahani… - Nature …, 2022 - nature.com
International challenges have become the de facto standard for comparative assessment of
image analysis algorithms. Although segmentation is the most widely investigated medical …