Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey on test-time adaptation under distribution shifts
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …
process that can effectively generalize to test samples, even in the presence of distribution …
Learning from noisy labels with deep neural networks: A survey
Deep learning has achieved remarkable success in numerous domains with help from large
amounts of big data. However, the quality of data labels is a concern because of the lack of …
amounts of big data. However, the quality of data labels is a concern because of the lack of …
Large language model as attributed training data generator: A tale of diversity and bias
Large language models (LLMs) have been recently leveraged as training data generators
for various natural language processing (NLP) tasks. While previous research has explored …
for various natural language processing (NLP) tasks. While previous research has explored …
Part-based pseudo label refinement for unsupervised person re-identification
Unsupervised person re-identification (re-ID) aims at learning discriminative representations
for person retrieval from unlabeled data. Recent techniques accomplish this task by using …
for person retrieval from unlabeled data. Recent techniques accomplish this task by using …
Preserving fairness generalization in deepfake detection
Although effective deepfake detection models have been developed in recent years recent
studies have revealed that these models can result in unfair performance disparities among …
studies have revealed that these models can result in unfair performance disparities among …
-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression
Bounding box (bbox) regression is a fundamental task in computer vision. So far, the most
commonly used loss functions for bbox regression are the Intersection over Union (IoU) loss …
commonly used loss functions for bbox regression are the Intersection over Union (IoU) loss …
Guiding pseudo-labels with uncertainty estimation for source-free unsupervised domain adaptation
Abstract Standard Unsupervised Domain Adaptation (UDA) methods assume the availability
of both source and target data during the adaptation. In this work, we investigate Source-free …
of both source and target data during the adaptation. In this work, we investigate Source-free …
Robust federated learning with noisy and heterogeneous clients
Abstract Model heterogeneous federated learning is a challenging task since each client
independently designs its own model. Due to the annotation difficulty and free-riding …
independently designs its own model. Due to the annotation difficulty and free-riding …
Twin contrastive learning with noisy labels
Learning from noisy data is a challenging task that significantly degenerates the model
performance. In this paper, we present TCL, a novel twin contrastive learning model to learn …
performance. In this paper, we present TCL, a novel twin contrastive learning model to learn …
Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation
Self-training is a competitive approach in domain adaptive segmentation, which trains the
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …
network with the pseudo labels on the target domain. However inevitably, the pseudo labels …