[HTML][HTML] Artificial intelligence and machine learning in energy systems: A bibliographic perspective

A Entezari, A Aslani, R Zahedi, Y Noorollahi - Energy Strategy Reviews, 2023 - Elsevier
Economic development and the comfort-loving nature of human beings in recent years have
resulted in increased energy demand. Since energy resources are scarce and should be …

[HTML][HTML] Adoption of artificial intelligence in smart cities: A comprehensive review

H Herath, M Mittal - International Journal of Information Management Data …, 2022 - Elsevier
Recently, the population density in cities has increased at a higher pace. According to the
United Nations Population Fund, cities accommodated 3.3 billion people (54%) of the global …

Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques

R Olu-Ajayi, H Alaka, I Sulaimon, F Sunmola… - Journal of Building …, 2022 - Elsevier
The high proportion of energy consumed in buildings has engendered the manifestation of
many environmental problems which deploy adverse impacts on the existence of mankind …

Machine Learning, Deep Learning and Statistical Analysis for forecasting building energy consumption—A systematic review

M Khalil, AS McGough, Z Pourmirza… - … Applications of Artificial …, 2022 - Elsevier
The building sector accounts for 36% of the total global energy usage and 40% of
associated Carbon Dioxide emissions. Therefore, the forecasting of building energy …

Review and prospect of data-driven techniques for load forecasting in integrated energy systems

J Zhu, H Dong, W Zheng, S Li, Y Huang, L ** - Applied Energy, 2022 - Elsevier
With synergies among multiple energy sectors, integrated energy systems (IESs) have been
recognized lately as an effective approach to accommodate large-scale renewables and …

Roles of artificial intelligence in construction engineering and management: A critical review and future trends

Y Pan, L Zhang - Automation in Construction, 2021 - Elsevier
With the extensive adoption of artificial intelligence (AI), construction engineering and
management (CEM) is experiencing a rapid digital transformation. Since AI-based solutions …

Carbon emission prediction models: A review

Y **, A Sharifi, Z Li, S Chen, S Zeng, S Zhao - Science of The Total …, 2024 - Elsevier
Amidst growing concerns over the greenhouse effect, especially its consequential impacts,
establishing effective Carbon Emission Prediction Models (CEPMs) to comprehend and …

Machine learning and deep learning in energy systems: A review

MM Forootan, I Larki, R Zahedi, A Ahmadi - Sustainability, 2022 - mdpi.com
With population increases and a vital need for energy, energy systems play an important
and decisive role in all of the sectors of society. To accelerate the process and improve the …

A review of machine learning in building load prediction

L Zhang, J Wen, Y Li, J Chen, Y Ye, Y Fu, W Livingood - Applied Energy, 2021 - Elsevier
The surge of machine learning and increasing data accessibility in buildings provide great
opportunities for applying machine learning to building energy system modeling and …

[HTML][HTML] Forecasting: theory and practice

F Petropoulos, D Apiletti, V Assimakopoulos… - International Journal of …, 2022 - Elsevier
Forecasting has always been at the forefront of decision making and planning. The
uncertainty that surrounds the future is both exciting and challenging, with individuals and …