Opportunities for neuromorphic computing algorithms and applications
Neuromorphic computing technologies will be important for the future of computing, but
much of the work in neuromorphic computing has focused on hardware development. Here …
much of the work in neuromorphic computing has focused on hardware development. Here …
Event-based vision: A survey
Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead
of capturing images at a fixed rate, they asynchronously measure per-pixel brightness …
of capturing images at a fixed rate, they asynchronously measure per-pixel brightness …
Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
chips with high energy efficiency by introducing neural dynamics and spike properties. As …
Training spiking neural networks using lessons from deep learning
The brain is the perfect place to look for inspiration to develop more efficient neural
networks. The inner workings of our synapses and neurons provide a glimpse at what the …
networks. The inner workings of our synapses and neurons provide a glimpse at what the …
Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things
In the Internet-of-Things (IoT) era, billions of sensors and devices collect and process data
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
from the environment, transmit them to cloud centers, and receive feedback via the Internet …
Human action recognition from various data modalities: A review
Human Action Recognition (HAR) aims to understand human behavior and assign a label to
each action. It has a wide range of applications, and therefore has been attracting increasing …
each action. It has a wide range of applications, and therefore has been attracting increasing …
Incorporating learnable membrane time constant to enhance learning of spiking neural networks
Abstract Spiking Neural Networks (SNNs) have attracted enormous research interest due to
temporal information processing capability, low power consumption, and high biological …
temporal information processing capability, low power consumption, and high biological …
Recent advances and future prospects for memristive materials, devices, and systems
Memristive technology has been rapidly emerging as a potential alternative to traditional
CMOS technology, which is facing fundamental limitations in its development. Since oxide …
CMOS technology, which is facing fundamental limitations in its development. Since oxide …
Deep residual learning in spiking neural networks
Abstract Deep Spiking Neural Networks (SNNs) present optimization difficulties for gradient-
based approaches due to discrete binary activation and complex spatial-temporal dynamics …
based approaches due to discrete binary activation and complex spatial-temporal dynamics …
Spike-driven transformer
Abstract Spiking Neural Networks (SNNs) provide an energy-efficient deep learning option
due to their unique spike-based event-driven (ie, spike-driven) paradigm. In this paper, we …
due to their unique spike-based event-driven (ie, spike-driven) paradigm. In this paper, we …