The technological landscape and applications of single-cell multi-omics

A Baysoy, Z Bai, R Satija, R Fan - Nature Reviews Molecular Cell …, 2023 - nature.com
Single-cell multi-omics technologies and methods characterize cell states and activities by
simultaneously integrating various single-modality omics methods that profile the …

[HTML][HTML] Computational strategies for single-cell multi-omics integration

N Adossa, S Khan, KT Rytkönen, LL Elo - Computational and Structural …, 2021 - Elsevier
Single-cell omics technologies are currently solving biological and medical problems that
earlier have remained elusive, such as discovery of new cell types, cellular differentiation …

Benchmarking clustering algorithms on estimating the number of cell types from single-cell RNA-sequencing data

L Yu, Y Cao, JYH Yang, P Yang - Genome biology, 2022 - Springer
Background A key task in single-cell RNA-seq (scRNA-seq) data analysis is to accurately
detect the number of cell types in the sample, which can be critical for downstream analyses …

[HTML][HTML] A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization

C Pacini, E Duncan, E Gonçalves, J Gilbert, S Bhosle… - Cancer Cell, 2024 - cell.com
Genetic screens in cancer cell lines inform gene function and drug discovery. More
comprehensive screen datasets with multi-omics data are needed to enhance opportunities …

OmicsAnalyst: a comprehensive web-based platform for visual analytics of multi-omics data

G Zhou, J Ewald, J ** based on latent subspace learning
X Ye, Y Shang, T Shi, W Zhang, T Sakurai - Computers in Biology and …, 2023 - Elsevier
The increased availability of high-throughput technologies has enabled biomedical
researchers to learn about disease etiology across multiple omics layers, which shows …

Consensus clustering of single-cell RNA-seq data by enhancing network affinity

Y Cui, S Zhang, Y Liang, X Wang… - Briefings in …, 2021 - academic.oup.com
Elucidation of cell subpopulations at high resolution is a key and challenging goal of single-
cell ribonucleic acid (RNA) sequencing (scRNA-seq) data analysis. Although unsupervised …