A review of learning in biologically plausible spiking neural networks

A Taherkhani, A Belatreche, Y Li, G Cosma… - Neural Networks, 2020 - Elsevier
Artificial neural networks have been used as a powerful processing tool in various areas
such as pattern recognition, control, robotics, and bioinformatics. Their wide applicability has …

Neuromorphic computing using non-volatile memory

GW Burr, RM Shelby, A Sebastian, S Kim… - … in Physics: X, 2017 - Taylor & Francis
Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path
for implementing massively-parallel and highly energy-efficient neuromorphic computing …

Spikingjelly: An open-source machine learning infrastructure platform for spike-based intelligence

W Fang, Y Chen, J Ding, Z Yu, T Masquelier… - Science …, 2023 - science.org
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic
chips with high energy efficiency by introducing neural dynamics and spike properties. As …

[BUCH][B] Neuronal dynamics: From single neurons to networks and models of cognition

W Gerstner, WM Kistler, R Naud, L Paninski - 2014 - books.google.com
What happens in our brain when we make a decision? What triggers a neuron to send out a
signal? What is the neural code? This textbook for advanced undergraduate and beginning …

Synaptic memory and CaMKII

RA Nicoll, H Schulman - Physiological reviews, 2023 - journals.physiology.org
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP)
were discovered within a decade of each other and have been inextricably intertwined ever …

Progress and challenges for memtransistors in neuromorphic circuits and systems

X Yan, JH Qian, VK Sangwan… - Advanced Materials, 2022 - Wiley Online Library
Due to the increasing importance of artificial intelligence (AI), significant recent effort has
been devoted to the development of neuromorphic circuits that seek to emulate the energy …

Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network

VA Demin, DV Nekhaev, IA Surazhevsky, KE Nikiruy… - Neural Networks, 2021 - Elsevier
This work is aimed to study experimental and theoretical approaches for searching effective
local training rules for unsupervised pattern recognition by high-performance memristor …

The spike-timing dependence of plasticity

DE Feldman - Neuron, 2012 - cell.com
In spike-timing-dependent plasticity (STDP), the order and precise temporal interval
between presynaptic and postsynaptic spikes determine the sign and magnitude of long …

Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules

N Frémaux, W Gerstner - Frontiers in neural circuits, 2016 - frontiersin.org
Classical Hebbian learning puts the emphasis on joint pre-and postsynaptic activity, but
neglects the potential role of neuromodulators. Since neuromodulators convey information …

Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition

N Kasabov, K Dhoble, N Nuntalid, G Indiveri - Neural Networks, 2013 - Elsevier
On-line learning and recognition of spatio-and spectro-temporal data (SSTD) is a very
challenging task and an important one for the future development of autonomous machine …