Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Toward autonomous laboratories: Convergence of artificial intelligence and experimental automation

Y **e, K Sattari, C Zhang, J Lin - Progress in Materials Science, 2023 - Elsevier
The ever-increasing demand for novel materials with superior properties inspires retrofitting
traditional research paradigms in the era of artificial intelligence and automation. An …

BoTorch: A framework for efficient Monte-Carlo Bayesian optimization

M Balandat, B Karrer, D Jiang… - Advances in neural …, 2020 - proceedings.neurips.cc
Bayesian optimization provides sample-efficient global optimization for a broad range of
applications, including automatic machine learning, engineering, physics, and experimental …

Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020

R Turner, D Eriksson, M McCourt… - NeurIPS 2020 …, 2021 - proceedings.mlr.press
This paper presents the results and insights from the black-box optimization (BBO)
challenge at NeurIPS2020 which ran from July–October, 2020. The challenge emphasized …

Protein design with guided discrete diffusion

N Gruver, S Stanton, N Frey… - Advances in neural …, 2024 - proceedings.neurips.cc
A popular approach to protein design is to combine a generative model with a discriminative
model for conditional sampling. The generative model samples plausible sequences while …

A multi-objective active learning platform and web app for reaction optimization

JAG Torres, SH Lau, P Anchuri… - Journal of the …, 2022 - ACS Publications
We report the development of an open-source experimental design via Bayesian
optimization platform for multi-objective reaction optimization. Using high-throughput …

Unexpected improvements to expected improvement for bayesian optimization

S Ament, S Daulton, D Eriksson… - Advances in …, 2023 - proceedings.neurips.cc
Expected Improvement (EI) is arguably the most popular acquisition function in Bayesian
optimization and has found countless successful applications, but its performance is often …

A self-driving laboratory advances the Pareto front for material properties

BP MacLeod, FGL Parlane, CC Rupnow… - Nature …, 2022 - nature.com
Useful materials must satisfy multiple objectives, where the optimization of one objective is
often at the expense of another. The Pareto front reports the optimal trade-offs between …

Automated self-optimization, intensification, and scale-up of photocatalysis in flow

A Slattery, Z Wen, P Tenblad, J Sanjosé-Orduna… - Science, 2024 - science.org
The optimization, intensification, and scale-up of photochemical processes constitute a
particular challenge in a manufacturing environment geared primarily toward thermal …

Parallel bayesian optimization of multiple noisy objectives with expected hypervolume improvement

S Daulton, M Balandat… - Advances in Neural …, 2021 - proceedings.neurips.cc
Optimizing multiple competing black-box objectives is a challenging problem in many fields,
including science, engineering, and machine learning. Multi-objective Bayesian optimization …