Scientific discovery in the age of artificial intelligence
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …
and accelerate research, hel** scientists to generate hypotheses, design experiments …
AI in drug discovery and its clinical relevance
The COVID-19 pandemic has emphasized the need for novel drug discovery process.
However, the journey from conceptualizing a drug to its eventual implementation in clinical …
However, the journey from conceptualizing a drug to its eventual implementation in clinical …
Learning inverse folding from millions of predicted structures
We consider the problem of predicting a protein sequence from its backbone atom
coordinates. Machine learning approaches to this problem to date have been limited by the …
coordinates. Machine learning approaches to this problem to date have been limited by the …
Geometric latent diffusion models for 3d molecule generation
Generative models, especially diffusion models (DMs), have achieved promising results for
generating feature-rich geometries and advancing foundational science problems such as …
generating feature-rich geometries and advancing foundational science problems such as …
Tankbind: Trigonometry-aware neural networks for drug-protein binding structure prediction
Illuminating interactions between proteins and small drug molecules is a long-standing
challenge in the field of drug discovery. Despite the importance of understanding these …
challenge in the field of drug discovery. Despite the importance of understanding these …
Equiformer: Equivariant graph attention transformer for 3d atomistic graphs
YL Liao, T Smidt - arxiv preprint arxiv:2206.11990, 2022 - arxiv.org
Despite their widespread success in various domains, Transformer networks have yet to
perform well across datasets in the domain of 3D atomistic graphs such as molecules even …
perform well across datasets in the domain of 3D atomistic graphs such as molecules even …
Evidential deep learning for guided molecular property prediction and discovery
While neural networks achieve state-of-the-art performance for many molecular modeling
and structure–property prediction tasks, these models can struggle with generalization to out …
and structure–property prediction tasks, these models can struggle with generalization to out …
Diffbp: Generative diffusion of 3d molecules for target protein binding
Generating molecules that bind to specific proteins is an important but challenging task in
drug discovery. Most previous works typically generate atoms autoregressively, with element …
drug discovery. Most previous works typically generate atoms autoregressively, with element …
Artificial intelligence for science in quantum, atomistic, and continuum systems
Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
sciences. Today, AI has started to advance natural sciences by improving, accelerating, and …
Clifford group equivariant neural networks
Abstract We introduce Clifford Group Equivariant Neural Networks: a novel approach for
constructing $\mathrm {O}(n) $-and $\mathrm {E}(n) $-equivariant models. We identify and …
constructing $\mathrm {O}(n) $-and $\mathrm {E}(n) $-equivariant models. We identify and …