Shifting machine learning for healthcare from development to deployment and from models to data

A Zhang, L **ng, J Zou, JC Wu - Nature biomedical engineering, 2022 - nature.com
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …

Federated learning for healthcare: Systematic review and architecture proposal

RS Antunes, C André da Costa, A Küderle… - ACM Transactions on …, 2022 - dl.acm.org
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …

Federated benchmarking of medical artificial intelligence with MedPerf

A Karargyris, R Umeton, MJ Sheller… - Nature machine …, 2023 - nature.com
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by
supporting and contributing to the evidence-based practice of medicine, personalizing …

Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer

J Ogier du Terrail, A Leopold, C Joly, C Béguier… - Nature medicine, 2023 - nature.com
Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic
potential and poor prognosis, and has limited treatment options. The current standard of …

Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues

A Rahman, MS Hossain, G Muhammad, D Kundu… - Cluster computing, 2023 - Springer
Abstract Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial
Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare …

Federated learning enables big data for rare cancer boundary detection

S Pati, U Baid, B Edwards, M Sheller, SH Wang… - Nature …, 2022 - nature.com
Although machine learning (ML) has shown promise across disciplines, out-of-sample
generalizability is concerning. This is currently addressed by sharing multi-site data, but …

Federated learning for medical image analysis: A survey

H Guan, PT Yap, A Bozoki, M Liu - Pattern Recognition, 2024 - Elsevier
Abstract Machine learning in medical imaging often faces a fundamental dilemma, namely,
the small sample size problem. Many recent studies suggest using multi-domain data …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Decentralized federated learning: A survey and perspective

L Yuan, Z Wang, L Sun, SY Philip… - IEEE Internet of Things …, 2024 - ieeexplore.ieee.org
Federated learning (FL) has been gaining attention for its ability to share knowledge while
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …

Distributed learning in wireless networks: Recent progress and future challenges

M Chen, D Gündüz, K Huang, W Saad… - IEEE Journal on …, 2021 - ieeexplore.ieee.org
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …