Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Shifting machine learning for healthcare from development to deployment and from models to data
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …
the automation of physician tasks as well as enhancements in clinical capabilities and …
Federated learning for healthcare: Systematic review and architecture proposal
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …
popularity as a means to extract knowledge that can improve the decision-making process in …
Federated benchmarking of medical artificial intelligence with MedPerf
A Karargyris, R Umeton, MJ Sheller… - Nature machine …, 2023 - nature.com
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by
supporting and contributing to the evidence-based practice of medicine, personalizing …
supporting and contributing to the evidence-based practice of medicine, personalizing …
Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer
Triple-negative breast cancer (TNBC) is a rare cancer, characterized by high metastatic
potential and poor prognosis, and has limited treatment options. The current standard of …
potential and poor prognosis, and has limited treatment options. The current standard of …
Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues
Abstract Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial
Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare …
Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare …
Federated learning enables big data for rare cancer boundary detection
Although machine learning (ML) has shown promise across disciplines, out-of-sample
generalizability is concerning. This is currently addressed by sharing multi-site data, but …
generalizability is concerning. This is currently addressed by sharing multi-site data, but …
Federated learning for medical image analysis: A survey
Abstract Machine learning in medical imaging often faces a fundamental dilemma, namely,
the small sample size problem. Many recent studies suggest using multi-domain data …
the small sample size problem. Many recent studies suggest using multi-domain data …
Federated learning for internet of things: A comprehensive survey
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
Decentralized federated learning: A survey and perspective
Federated learning (FL) has been gaining attention for its ability to share knowledge while
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …
Distributed learning in wireless networks: Recent progress and future challenges
The next-generation of wireless networks will enable many machine learning (ML) tools and
applications to efficiently analyze various types of data collected by edge devices for …
applications to efficiently analyze various types of data collected by edge devices for …