Gpt (generative pre-trained transformer)–a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions
The Generative Pre-trained Transformer (GPT) represents a notable breakthrough in the
domain of natural language processing, which is propelling us toward the development of …
domain of natural language processing, which is propelling us toward the development of …
A survey on data augmentation for text classification
Data augmentation, the artificial creation of training data for machine learning by
transformations, is a widely studied research field across machine learning disciplines …
transformations, is a widely studied research field across machine learning disciplines …
Better diffusion models further improve adversarial training
It has been recognized that the data generated by the denoising diffusion probabilistic
model (DDPM) improves adversarial training. After two years of rapid development in …
model (DDPM) improves adversarial training. After two years of rapid development in …
Cross-entropy loss functions: Theoretical analysis and applications
Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss
applied to the outputs of a neural network, when the softmax is used. But, what guarantees …
applied to the outputs of a neural network, when the softmax is used. But, what guarantees …
Robust fine-tuning of zero-shot models
Large pre-trained models such as CLIP or ALIGN offer consistent accuracy across a range of
data distributions when performing zero-shot inference (ie, without fine-tuning on a specific …
data distributions when performing zero-shot inference (ie, without fine-tuning on a specific …
Rethinking machine unlearning for large language models
We explore machine unlearning (MU) in the domain of large language models (LLMs),
referred to as LLM unlearning. This initiative aims to eliminate undesirable data influence …
referred to as LLM unlearning. This initiative aims to eliminate undesirable data influence …
Are transformers more robust than cnns?
Transformer emerges as a powerful tool for visual recognition. In addition to demonstrating
competitive performance on a broad range of visual benchmarks, recent works also argue …
competitive performance on a broad range of visual benchmarks, recent works also argue …
Robustbench: a standardized adversarial robustness benchmark
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …
adversarial robustness which often makes it hard to identify the most promising ideas in …
Recent advances in adversarial training for adversarial robustness
Adversarial training is one of the most effective approaches defending against adversarial
examples for deep learning models. Unlike other defense strategies, adversarial training …
examples for deep learning models. Unlike other defense strategies, adversarial training …
Measuring robustness to natural distribution shifts in image classification
We study how robust current ImageNet models are to distribution shifts arising from natural
variations in datasets. Most research on robustness focuses on synthetic image …
variations in datasets. Most research on robustness focuses on synthetic image …