Towards continual reinforcement learning: A review and perspectives
In this article, we aim to provide a literature review of different formulations and approaches
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
to continual reinforcement learning (RL), also known as lifelong or non-stationary RL. We …
A review of uncertainty for deep reinforcement learning
Uncertainty is ubiquitous in games, both in the agents playing games and often in the games
themselves. Working with uncertainty is therefore an important component of successful …
themselves. Working with uncertainty is therefore an important component of successful …
Mastering diverse domains through world models
D Hafner, J Pasukonis, J Ba, T Lillicrap - ar** a general algorithm that learns to solve tasks across a wide range of
applications has been a fundamental challenge in artificial intelligence. Although current …
applications has been a fundamental challenge in artificial intelligence. Although current …
Deep reinforcement learning at the edge of the statistical precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing
their relative performance on a large suite of tasks. Most published results on deep RL …
their relative performance on a large suite of tasks. Most published results on deep RL …
A survey of zero-shot generalisation in deep reinforcement learning
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …
produce RL algorithms whose policies generalise well to novel unseen situations at …
Bigger, better, faster: Human-level atari with human-level efficiency
We introduce a value-based RL agent, which we call BBF, that achieves super-human
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …
performance in the Atari 100K benchmark. BBF relies on scaling the neural networks used …
Mastering atari with discrete world models
Intelligent agents need to generalize from past experience to achieve goals in complex
environments. World models facilitate such generalization and allow learning behaviors …
environments. World models facilitate such generalization and allow learning behaviors …
Meta-learning in neural networks: A survey
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more
quickly, by leveraging prior experience to learn how to learn. However, much of the current …
quickly, by leveraging prior experience to learn how to learn. However, much of the current …
Mastering atari, go, chess and shogi by planning with a learned model
Constructing agents with planning capabilities has long been one of the main challenges in
the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge …
the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge …