A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - International Journal of …, 2024 - Springer
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …

Medical image segmentation review: The success of u-net

R Azad, EK Aghdam, A Rauland, Y Jia… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Automatic medical image segmentation is a crucial topic in the medical domain and
successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the …

Vmamba: Visual state space model

Y Liu, Y Tian, Y Zhao, H Yu, L **e… - Advances in neural …, 2025 - proceedings.neurips.cc
Designing computationally efficient network architectures remains an ongoing necessity in
computer vision. In this paper, we adapt Mamba, a state-space language model, into …

Yolov9: Learning what you want to learn using programmable gradient information

CY Wang, IH Yeh, HY Mark Liao - European conference on computer …, 2024 - Springer
Today's deep learning methods focus on how to design the objective functions to make the
prediction as close as possible to the target. Meanwhile, an appropriate neural network …

Run, don't walk: chasing higher FLOPS for faster neural networks

J Chen, S Kao, H He, W Zhuo, S Wen… - Proceedings of the …, 2023 - openaccess.thecvf.com
To design fast neural networks, many works have been focusing on reducing the number of
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …

Biformer: Vision transformer with bi-level routing attention

L Zhu, X Wang, Z Ke, W Zhang… - Proceedings of the …, 2023 - openaccess.thecvf.com
As the core building block of vision transformers, attention is a powerful tool to capture long-
range dependency. However, such power comes at a cost: it incurs a huge computation …

Videomae v2: Scaling video masked autoencoders with dual masking

L Wang, B Huang, Z Zhao, Z Tong… - Proceedings of the …, 2023 - openaccess.thecvf.com
Scale is the primary factor for building a powerful foundation model that could well
generalize to a variety of downstream tasks. However, it is still challenging to train video …

Internimage: Exploring large-scale vision foundation models with deformable convolutions

W Wang, J Dai, Z Chen, Z Huang, Z Li… - Proceedings of the …, 2023 - openaccess.thecvf.com
Compared to the great progress of large-scale vision transformers (ViTs) in recent years,
large-scale models based on convolutional neural networks (CNNs) are still in an early …

Efficientvit: Memory efficient vision transformer with cascaded group attention

X Liu, H Peng, N Zheng, Y Yang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Vision transformers have shown great success due to their high model capabilities.
However, their remarkable performance is accompanied by heavy computation costs, which …

Dual aggregation transformer for image super-resolution

Z Chen, Y Zhang, J Gu, L Kong… - Proceedings of the …, 2023 - openaccess.thecvf.com
Transformer has recently gained considerable popularity in low-level vision tasks, including
image super-resolution (SR). These networks utilize self-attention along different …