Scientific discovery in the age of artificial intelligence

H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu… - Nature, 2023 - nature.com
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment
and accelerate research, hel** scientists to generate hypotheses, design experiments …

Deep-learning seismology

SM Mousavi, GC Beroza - Science, 2022 - science.org
Seismic waves from earthquakes and other sources are used to infer the structure and
properties of Earth's interior. The availability of large-scale seismic datasets and the …

Machine learning in earthquake seismology

SM Mousavi, GC Beroza - Annual Review of Earth and …, 2023 - annualreviews.org
Machine learning (ML) is a collection of methods used to develop understanding and
predictive capability by learning relationships embedded in data. ML methods are becoming …

Deep learning for geophysics: Current and future trends

S Yu, J Ma - Reviews of Geophysics, 2021 - Wiley Online Library
Recently deep learning (DL), as a new data‐driven technique compared to conventional
approaches, has attracted increasing attention in geophysical community, resulting in many …

Iterative integration of deep learning in hybrid Earth surface system modelling

M Chen, Z Qian, N Boers, AJ Jakeman… - Nature Reviews Earth & …, 2023 - nature.com
Earth system modelling (ESM) is essential for understanding past, present and future Earth
processes. Deep learning (DL), with the data-driven strength of neural networks, has …

Physics‐informed neural networks (PINNs) for wave propagation and full waveform inversionsFree GPT-4

M Rasht‐Behesht, C Huber, K Shukla… - Journal of …, 2022 - Wiley Online Library
We propose a new approach to the solution of the wave propagation and full waveform
inversions (FWIs) based on a recent advance in deep learning called physics‐informed …

[HTML][HTML] Deep learning for geological hazards analysis: Data, models, applications, and opportunities

Z Ma, G Mei - Earth-Science Reviews, 2021 - Elsevier
As natural disasters are induced by geodynamic activities or abnormal changes in the
environment, geological hazards tend to wreak havoc on the environment and human …

A review of earth artificial intelligence

Z Sun, L Sandoval, R Crystal-Ornelas… - Computers & …, 2022 - Elsevier
In recent years, Earth system sciences are urgently calling for innovation on improving
accuracy, enhancing model intelligence level, scaling up operation, and reducing costs in …

Machine learning and earthquake forecasting—next steps

GC Beroza, M Segou, S Mostafa Mousavi - Nature communications, 2021 - nature.com
A new generation of earthquake catalogs developed through supervised machine-learning
illuminates earthquake activity with unprecedented detail. Application of unsupervised …

Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers

J Münchmeyer, J Woollam, A Rietbrock… - Journal of …, 2022 - Wiley Online Library
Seismic event detection and phase picking are the base of many seismological workflows. In
recent years, several publications demonstrated that deep learning approaches significantly …