A survey on data augmentation for text classification

M Bayer, MA Kaufhold, C Reuter - ACM Computing Surveys, 2022 - dl.acm.org
Data augmentation, the artificial creation of training data for machine learning by
transformations, is a widely studied research field across machine learning disciplines …

Recent advances in adversarial training for adversarial robustness

T Bai, J Luo, J Zhao, B Wen, Q Wang - arxiv preprint arxiv:2102.01356, 2021 - arxiv.org
Adversarial training is one of the most effective approaches defending against adversarial
examples for deep learning models. Unlike other defense strategies, adversarial training …

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks

F Croce, M Hein - International conference on machine …, 2020 - proceedings.mlr.press
The field of defense strategies against adversarial attacks has significantly grown over the
last years, but progress is hampered as the evaluation of adversarial defenses is often …

Theoretically principled trade-off between robustness and accuracy

H Zhang, Y Yu, J Jiao, E **ng… - International …, 2019 - proceedings.mlr.press
We identify a trade-off between robustness and accuracy that serves as a guiding principle
in the design of defenses against adversarial examples. Although this problem has been …

Better diffusion models further improve adversarial training

Z Wang, T Pang, C Du, M Lin… - … on Machine Learning, 2023 - proceedings.mlr.press
It has been recognized that the data generated by the denoising diffusion probabilistic
model (DDPM) improves adversarial training. After two years of rapid development in …

Cross-entropy loss functions: Theoretical analysis and applications

A Mao, M Mohri, Y Zhong - International conference on …, 2023 - proceedings.mlr.press
Cross-entropy is a widely used loss function in applications. It coincides with the logistic loss
applied to the outputs of a neural network, when the softmax is used. But, what guarantees …

Robustbench: a standardized adversarial robustness benchmark

F Croce, M Andriushchenko, V Sehwag… - arxiv preprint arxiv …, 2020 - arxiv.org
As a research community, we are still lacking a systematic understanding of the progress on
adversarial robustness which often makes it hard to identify the most promising ideas in …

Adversarial training for free!

A Shafahi, M Najibi, MA Ghiasi, Z Xu… - Advances in neural …, 2019 - proceedings.neurips.cc
Adversarial training, in which a network is trained on adversarial examples, is one of the few
defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high …

Overfitting in adversarially robust deep learning

L Rice, E Wong, Z Kolter - International conference on …, 2020 - proceedings.mlr.press
It is common practice in deep learning to use overparameterized networks and train for as
long as possible; there are numerous studies that show, both theoretically and empirically …

Adversarial attacks and defenses in images, graphs and text: A review

H Xu, Y Ma, HC Liu, D Deb, H Liu, JL Tang… - International journal of …, 2020 - Springer
Deep neural networks (DNN) have achieved unprecedented success in numerous machine
learning tasks in various domains. However, the existence of adversarial examples raises …