Event-based vision: A survey

G Gallego, T Delbrück, G Orchard… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead
of capturing images at a fixed rate, they asynchronously measure per-pixel brightness …

Towards spike-based machine intelligence with neuromorphic computing

K Roy, A Jaiswal, P Panda - Nature, 2019 - nature.com
Guided by brain-like 'spiking'computational frameworks, neuromorphic computing—brain-
inspired computing for machine intelligence—promises to realize artificial intelligence while …

Loihi: A neuromorphic manycore processor with on-chip learning

M Davies, N Srinivasa, TH Lin, G Chinya, Y Cao… - Ieee …, 2018 - ieeexplore.ieee.org
Loihi is a 60-mm2 chip fabricated in Intels 14-nm process that advances the state-of-the-art
modeling of spiking neural networks in silicon. It integrates a wide range of novel features for …

Training spiking neural networks using lessons from deep learning

JK Eshraghian, M Ward, EO Neftci… - Proceedings of the …, 2023 - ieeexplore.ieee.org
The brain is the perfect place to look for inspiration to develop more efficient neural
networks. The inner workings of our synapses and neurons provide a glimpse at what the …

Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks

EO Neftci, H Mostafa, F Zenke - IEEE Signal Processing …, 2019 - ieeexplore.ieee.org
Spiking neural networks (SNNs) are nature's versatile solution to fault-tolerant, energy-
efficient signal processing. To translate these benefits into hardware, a growing number of …

Differentiable spike: Rethinking gradient-descent for training spiking neural networks

Y Li, Y Guo, S Zhang, S Deng… - Advances in Neural …, 2021 - proceedings.neurips.cc
Abstract Spiking Neural Networks (SNNs) have emerged as a biology-inspired method
mimicking the spiking nature of brain neurons. This bio-mimicry derives SNNs' energy …

Deep learning in spiking neural networks

A Tavanaei, M Ghodrati, SR Kheradpisheh… - Neural networks, 2019 - Elsevier
In recent years, deep learning has revolutionized the field of machine learning, for computer
vision in particular. In this approach, a deep (multilayer) artificial neural network (ANN) is …

[HTML][HTML] Deep learning with spiking neurons: opportunities and challenges

M Pfeiffer, T Pfeil - Frontiers in neuroscience, 2018 - frontiersin.org
Spiking neural networks (SNNs) are inspired by information processing in biology, where
sparse and asynchronous binary signals are communicated and processed in a massively …

A solution to the learning dilemma for recurrent networks of spiking neurons

G Bellec, F Scherr, A Subramoney, E Hajek… - Nature …, 2020 - nature.com
Recurrently connected networks of spiking neurons underlie the astounding information
processing capabilities of the brain. Yet in spite of extensive research, how they can learn …

Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware

N Rathi, I Chakraborty, A Kosta, A Sengupta… - ACM Computing …, 2023 - dl.acm.org
Neuromorphic Computing, a concept pioneered in the late 1980s, is receiving a lot of
attention lately due to its promise of reducing the computational energy, latency, as well as …