Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on federated learning for resource-constrained IoT devices
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …
model by learning from multiple decentralized edge clients. FL enables on-device training …
Demystifying parallel and distributed deep learning: An in-depth concurrency analysis
Deep Neural Networks (DNNs) are becoming an important tool in modern computing
applications. Accelerating their training is a major challenge and techniques range from …
applications. Accelerating their training is a major challenge and techniques range from …
Decentralized federated learning: A survey and perspective
Federated learning (FL) has been gaining attention for its ability to share knowledge while
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …
Federated multi-task learning under a mixture of distributions
The increasing size of data generated by smartphones and IoT devices motivated the
development of Federated Learning (FL), a framework for on-device collaborative training of …
development of Federated Learning (FL), a framework for on-device collaborative training of …
Federated learning with buffered asynchronous aggregation
Scalability and privacy are two critical concerns for cross-device federated learning (FL)
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …
systems. In this work, we identify that synchronous FL–cannot scale efficiently beyond a few …
Decentralized federated averaging
Federated averaging (FedAvg) is a communication-efficient algorithm for distributed training
with an enormous number of clients. In FedAvg, clients keep their data locally for privacy …
with an enormous number of clients. In FedAvg, clients keep their data locally for privacy …
Advances and open problems in federated learning
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …
devices or whole organizations) collaboratively train a model under the orchestration of a …
Asynchronous federated optimization
Federated learning enables training on a massive number of edge devices. To improve
flexibility and scalability, we propose a new asynchronous federated optimization algorithm …
flexibility and scalability, we propose a new asynchronous federated optimization algorithm …
[HTML][HTML] Privacy preservation in federated learning: An insightful survey from the GDPR perspective
In recent years, along with the blooming of Machine Learning (ML)-based applications and
services, ensuring data privacy and security have become a critical obligation. ML-based …
services, ensuring data privacy and security have become a critical obligation. ML-based …
GossipFL: A decentralized federated learning framework with sparsified and adaptive communication
Recently, federated learning (FL) techniques have enabled multiple users to train machine
learning models collaboratively without data sharing. However, existing FL algorithms suffer …
learning models collaboratively without data sharing. However, existing FL algorithms suffer …