Trustworthy artificial intelligence: a review

D Kaur, S Uslu, KJ Rittichier, A Durresi - ACM computing surveys (CSUR …, 2022 - dl.acm.org
Artificial intelligence (AI) and algorithmic decision making are having a profound impact on
our daily lives. These systems are vastly used in different high-stakes applications like …

[HTML][HTML] Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond

G Yang, Q Ye, J **a - Information Fusion, 2022 - Elsevier
Abstract Explainable Artificial Intelligence (XAI) is an emerging research topic of machine
learning aimed at unboxing how AI systems' black-box choices are made. This research field …

A survey on explainable artificial intelligence (xai): Toward medical xai

E Tjoa, C Guan - IEEE transactions on neural networks and …, 2020 - ieeexplore.ieee.org
Recently, artificial intelligence and machine learning in general have demonstrated
remarkable performances in many tasks, from image processing to natural language …

AI applications to medical images: From machine learning to deep learning

I Castiglioni, L Rundo, M Codari, G Di Leo, C Salvatore… - Physica medica, 2021 - Elsevier
Purpose Artificial intelligence (AI) models are playing an increasing role in biomedical
research and healthcare services. This review focuses on challenges points to be clarified …

[HTML][HTML] Transparency of deep neural networks for medical image analysis: A review of interpretability methods

Z Salahuddin, HC Woodruff, A Chatterjee… - Computers in biology and …, 2022 - Elsevier
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for
diagnosis and treatment decisions. Deep neural networks have shown the same or better …

Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond

X Li, H **ong, X Li, X Wu, X Zhang, J Liu, J Bian… - … and Information Systems, 2022 - Springer
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …

Explainability of artificial intelligence methods, applications and challenges: A comprehensive survey

W Ding, M Abdel-Basset, H Hawash, AM Ali - Information Sciences, 2022 - Elsevier
The continuous advancement of Artificial Intelligence (AI) has been revolutionizing the
strategy of decision-making in different life domains. Regardless of this achievement, AI …

Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review

H Chen, C Gomez, CM Huang, M Unberath - NPJ digital medicine, 2022 - nature.com
Abstract Transparency in Machine Learning (ML), often also referred to as interpretability or
explainability, attempts to reveal the working mechanisms of complex models. From a …

Going deep in medical image analysis: concepts, methods, challenges, and future directions

F Altaf, SMS Islam, N Akhtar, NK Janjua - IEEE Access, 2019 - ieeexplore.ieee.org
Medical image analysis is currently experiencing a paradigm shift due to deep learning. This
technology has recently attracted so much interest of the Medical Imaging Community that it …

A review of explainable deep learning cancer detection models in medical imaging

MA Gulum, CM Trombley, M Kantardzic - Applied Sciences, 2021 - mdpi.com
Deep learning has demonstrated remarkable accuracy analyzing images for cancer
detection tasks in recent years. The accuracy that has been achieved rivals radiologists and …