A concise review of state estimation techniques for partial differential equation systems

IF Yupanqui Tello, A Vande Wouwer, D Coutinho - Mathematics, 2021 - mdpi.com
While state estimation techniques are routinely applied to systems represented by ordinary
differential equation (ODE) models, it remains a challenging task to design an observer for a …

H Codesign for Uncertain Nonlinear Control Systems Based on Policy Iteration Method

QY Fan, D Wang, B Xu - IEEE Transactions on Cybernetics, 2021 - ieeexplore.ieee.org
In this article, the problem of codesign for nonlinear control systems with unmatched
uncertainties and adjustable parameters is investigated. The main purpose is to solve the …

Stability analysis of a system coupled to a heat equation

L Baudouin, A Seuret, F Gouaisbaut - Automatica, 2019 - Elsevier
As a first approach to the study of systems coupling finite and infinite dimensional natures,
this article addresses the stability of a system of ordinary differential equations coupled with …

Stability analysis of an ordinary differential equation interconnected with the reaction–diffusion equation

M Bajodek, A Seuret, F Gouaisbaut - Automatica, 2022 - Elsevier
This paper deals with the stability analysis of the reaction–diffusion equation interconnected
with a finite-dimensional system. In this situation, stability is no longer straightforward to …

Moments and convex optimization for analysis and control of nonlinear PDEs

M Korda, D Henrion, JB Lasserre - Handbook of Numerical Analysis, 2022 - Elsevier
This work presents a convex-optimization-based framework for analysis and control of
nonlinear partial differential equations. A measure-valued approach uses a particular weak …

Stability analysis of dissipative systems subject to nonlinear dam** via Lyapunov techniques

S Marx, Y Chitour, C Prieur - IEEE Transactions on Automatic …, 2019 - ieeexplore.ieee.org
In this paper, we provide a general strategy based on Lyapunov functionals to analyze
global asymptotic stability of linear infinite-dimensional systems subject to nonlinear …

A Partial Integral Equation (PIE) representation of coupled linear PDEs and scalable stability analysis using LMIs

MM Peet - Automatica, 2021 - Elsevier
We present a new Partial Integral Equation (PIE) representation of Partial Differential
Equations (PDEs) in which it is possible to use convex optimization to perform stability …

Synthesizing control laws from data using sum-of-squares optimization

JJ Bramburger, S Dahdah… - 2024 IEEE Conference on …, 2024 - ieeexplore.ieee.org
The control Lyapunov function (CLF) approach to nonlinear control design is well
established. Moreover, when the plant is control affine and polynomial, sum-of-squares …

A generalized LMI formulation for input-output analysis of linear systems of ODEs coupled with PDEs

S Shivakumar, A Das, S Weiland… - 2019 IEEE 58th …, 2019 - ieeexplore.ieee.org
In this paper, we consider input-output properties of linear systems consisting of PDEs on a
finite domain coupled with ODEs through the boundary conditions of the PDE. This work …

A framework for input–output analysis of wall-bounded shear flows

M Ahmadi, G Valmorbida, D Gayme… - Journal of Fluid …, 2019 - cambridge.org
We propose a new framework to evaluate input–output amplification properties of nonlinear
models of wall-bounded shear flows, subject to both square integrable and persistent …