Survey on explainable AI: From approaches, limitations and applications aspects

W Yang, Y Wei, H Wei, Y Chen, G Huang, X Li… - Human-Centric …, 2023 - Springer
In recent years, artificial intelligence (AI) technology has been used in most if not all domains
and has greatly benefited our lives. While AI can accurately extract critical features and …

Deep learning based vulnerability detection: Are we there yet?

S Chakraborty, R Krishna, Y Ding… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Automated detection of software vulnerabilities is a fundamental problem in software
security. Existing program analysis techniques either suffer from high false positives or false …

Explainable artificial intelligence in cybersecurity: A survey

N Capuano, G Fenza, V Loia, C Stanzione - Ieee Access, 2022 - ieeexplore.ieee.org
Nowadays, Artificial Intelligence (AI) is widely applied in every area of human being's daily
life. Despite the AI benefits, its application suffers from the opacity of complex internal …

Deep learning based attack detection for cyber-physical system cybersecurity: A survey

J Zhang, L Pan, QL Han, C Chen… - IEEE/CAA Journal of …, 2021 - ieeexplore.ieee.org
With the booming of cyber attacks and cyber criminals against cyber-physical systems
(CPSs), detecting these attacks remains challenging. It might be the worst of times, but it …

Parameterized explainer for graph neural network

D Luo, W Cheng, D Xu, W Yu, B Zong… - Advances in neural …, 2020 - proceedings.neurips.cc
Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by
GNNs remains a challenging open problem. The leading method mainly addresses the local …

Dos and don'ts of machine learning in computer security

D Arp, E Quiring, F Pendlebury, A Warnecke… - 31st USENIX Security …, 2022 - usenix.org
With the growing processing power of computing systems and the increasing availability of
massive datasets, machine learning algorithms have led to major breakthroughs in many …

[HTML][HTML] Machine learning and deep learning methods for intrusion detection systems: A survey

H Liu, B Lang - applied sciences, 2019 - mdpi.com
Networks play important roles in modern life, and cyber security has become a vital research
area. An intrusion detection system (IDS) which is an important cyber security technique …

Neural cleanse: Identifying and mitigating backdoor attacks in neural networks

B Wang, Y Yao, S Shan, H Li… - … IEEE symposium on …, 2019 - ieeexplore.ieee.org
Lack of transparency in deep neural networks (DNNs) make them susceptible to backdoor
attacks, where hidden associations or triggers override normal classification to produce …

Strip: A defence against trojan attacks on deep neural networks

Y Gao, C Xu, D Wang, S Chen… - Proceedings of the 35th …, 2019 - dl.acm.org
A recent trojan attack on deep neural network (DNN) models is one insidious variant of data
poisoning attacks. Trojan attacks exploit an effective backdoor created in a DNN model by …

A survey of android malware detection with deep neural models

J Qiu, J Zhang, W Luo, L Pan, S Nepal… - ACM Computing Surveys …, 2020 - dl.acm.org
Deep Learning (DL) is a disruptive technology that has changed the landscape of cyber
security research. Deep learning models have many advantages over traditional Machine …