Intersections of Poisson k-flats in constant curvature spaces

C Betken, D Hug, C Thäle - Stochastic Processes and their Applications, 2023 - Elsevier
Poisson processes in the space of k-dimensional totally geodesic subspaces (k-flats) in a d-
dimensional standard space of constant curvature κ∈{− 1, 0, 1} are studied, whose …

Boolean models in hyperbolic space

D Hug, G Last, M Schulte - arxiv preprint arxiv:2408.03890, 2024 - arxiv.org
The union of the particles of a stationary Poisson process of compact (convex) sets in
Euclidean space is called Boolean model and is a classical topic of stochastic geometry. In …

Beta-star polytopes and hyperbolic stochastic geometry

T Godland, Z Kabluchko, C Thäle - Advances in Mathematics, 2022 - Elsevier
Motivated by problems of hyperbolic stochastic geometry we introduce and study the class of
beta-star polytopes. A beta-star polytope is defined as the convex hull of an inhomogeneous …

Does a central limit theorem hold for the k-skeleton of Poisson hyperplanes in hyperbolic space?

F Herold, D Hug, C Thäle - Probability Theory and Related Fields, 2021 - Springer
Poisson processes in the space of (d-1)(d-1)-dimensional totally geodesic subspaces
(hyperplanes) in ad-dimensional hyperbolic space of constant curvature-1-1 are studied …

Fluctuations of -geodesic Poisson hyperplanes in hyperbolic space

Z Kabluchko, D Rosen, C Thäle - arxiv preprint arxiv:2205.12820, 2022 - arxiv.org
Poisson processes of so-called $\lambda $-geodesic hyperplanes in $ d $-dimensional
hyperbolic space are studied for $0\leq\lambda\leq 1$. The case $\lambda= 0$ corresponds …

The radial spanning tree in hyperbolic space

D Rosen, M Schulte, C Thäle, V Trapp - arxiv preprint arxiv:2408.15131, 2024 - arxiv.org
Consider a stationary Poisson process $\eta $ in a $ d $-dimensional hyperbolic space of
constant curvature $-\varkappa $ and let the points of $\eta $ together with a fixed origin $ o …

Intersection probabilities for flats in hyperbolic space

E Sönmez, P Spanos, C Thäle - arxiv preprint arxiv:2407.10708, 2024 - arxiv.org
Consider the $ d $-dimensional hyperbolic space $\mathbb {M} _K^ d $ of constant
curvature $ K< 0$ and fix a point $ o $ playing the role of an origin. Let $\mathbf {L} $ be a …

Percolation in the vacant set of Poisson cylinders

J Tykesson, D Windisch - Probability theory and related fields, 2012 - Springer
We consider a Poisson point process on the space of lines in\mathbb R^ d, where a
multiplicative factor u> 0 of the intensity measure determines the density of lines. Each line …

Poisson–Voronoi percolation in the hyperbolic plane with small intensities

B Hansen, T Müller - The Annals of Probability, 2024 - projecteuclid.org
We consider percolation on the Voronoi tessellation generated by a homogeneous Poisson
point process on the hyperbolic plane. We show that the critical probability for the existence …

A quantitative central limit theorem for Poisson horospheres in high dimensions

Z Kabluchko, D Rosen, C Thäle - Electronic Communications in …, 2024 - projecteuclid.org
Consider a stationary Poisson process of horospheres in ad-dimensional hyperbolic space.
In the focus of this note is the total surface area these random horospheres induce in a …