A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

A survey of graph neural networks for recommender systems: Challenges, methods, and directions

C Gao, Y Zheng, N Li, Y Li, Y Qin, J Piao… - ACM Transactions on …, 2023 - dl.acm.org
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …

LightGCL: Simple yet effective graph contrastive learning for recommendation

X Cai, C Huang, L **a, X Ren - arxiv preprint arxiv:2302.08191, 2023 - arxiv.org
Graph neural network (GNN) is a powerful learning approach for graph-based recommender
systems. Recently, GNNs integrated with contrastive learning have shown superior …

Hypergraph contrastive collaborative filtering

L **a, C Huang, Y Xu, J Zhao, D Yin… - Proceedings of the 45th …, 2022 - dl.acm.org
Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing
users and items into latent representation space, with their correlative patterns from …

Improving graph collaborative filtering with neighborhood-enriched contrastive learning

Z Lin, C Tian, Y Hou, WX Zhao - … of the ACM web conference 2022, 2022 - dl.acm.org
Recently, graph collaborative filtering methods have been proposed as an effective
recommendation approach, which can capture users' preference over items by modeling the …

XSimGCL: Towards extremely simple graph contrastive learning for recommendation

J Yu, X **a, T Chen, L Cui… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Contrastive learning (CL) has recently been demonstrated critical in improving
recommendation performance. The underlying principle of CL-based recommendation …

Are graph augmentations necessary? simple graph contrastive learning for recommendation

J Yu, H Yin, X **a, T Chen, L Cui… - Proceedings of the 45th …, 2022 - dl.acm.org
Contrastive learning (CL) recently has spurred a fruitful line of research in the field of
recommendation, since its ability to extract self-supervised signals from the raw data is well …

UltraGCN: ultra simplification of graph convolutional networks for recommendation

K Mao, J Zhu, X **ao, B Lu, Z Wang, X He - Proceedings of the 30th ACM …, 2021 - dl.acm.org
With the recent success of graph convolutional networks (GCNs), they have been widely
applied for recommendation, and achieved impressive performance gains. The core of …

Disentangled contrastive collaborative filtering

X Ren, L **a, J Zhao, D Yin, C Huang - Proceedings of the 46th …, 2023 - dl.acm.org
Recent studies show that graph neural networks (GNNs) are prevalent to model high-order
relationships for collaborative filtering (CF). Towards this research line, graph contrastive …

Graph neural networks in recommender systems: a survey

S Wu, F Sun, W Zhang, X **e, B Cui - ACM Computing Surveys, 2022 - dl.acm.org
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …