Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
A survey of graph neural networks for recommender systems: Challenges, methods, and directions
Recommender system is one of the most important information services on today's Internet.
Recently, graph neural networks have become the new state-of-the-art approach to …
Recently, graph neural networks have become the new state-of-the-art approach to …
LightGCL: Simple yet effective graph contrastive learning for recommendation
Graph neural network (GNN) is a powerful learning approach for graph-based recommender
systems. Recently, GNNs integrated with contrastive learning have shown superior …
systems. Recently, GNNs integrated with contrastive learning have shown superior …
Hypergraph contrastive collaborative filtering
Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing
users and items into latent representation space, with their correlative patterns from …
users and items into latent representation space, with their correlative patterns from …
Improving graph collaborative filtering with neighborhood-enriched contrastive learning
Recently, graph collaborative filtering methods have been proposed as an effective
recommendation approach, which can capture users' preference over items by modeling the …
recommendation approach, which can capture users' preference over items by modeling the …
XSimGCL: Towards extremely simple graph contrastive learning for recommendation
Contrastive learning (CL) has recently been demonstrated critical in improving
recommendation performance. The underlying principle of CL-based recommendation …
recommendation performance. The underlying principle of CL-based recommendation …
Are graph augmentations necessary? simple graph contrastive learning for recommendation
Contrastive learning (CL) recently has spurred a fruitful line of research in the field of
recommendation, since its ability to extract self-supervised signals from the raw data is well …
recommendation, since its ability to extract self-supervised signals from the raw data is well …
UltraGCN: ultra simplification of graph convolutional networks for recommendation
With the recent success of graph convolutional networks (GCNs), they have been widely
applied for recommendation, and achieved impressive performance gains. The core of …
applied for recommendation, and achieved impressive performance gains. The core of …
Disentangled contrastive collaborative filtering
Recent studies show that graph neural networks (GNNs) are prevalent to model high-order
relationships for collaborative filtering (CF). Towards this research line, graph contrastive …
relationships for collaborative filtering (CF). Towards this research line, graph contrastive …
Graph neural networks in recommender systems: a survey
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …
alleviate such information overload. Due to the important application value of recommender …