Artificial intelligence for multimodal data integration in oncology

J Lipkova, RJ Chen, B Chen, MY Lu, M Barbieri… - Cancer cell, 2022 - cell.com
In oncology, the patient state is characterized by a whole spectrum of modalities, ranging
from radiology, histology, and genomics to electronic health records. Current artificial …

Multimodal deep learning for biomedical data fusion: a review

SR Stahlschmidt, B Ulfenborg… - Briefings in …, 2022 - academic.oup.com
Biomedical data are becoming increasingly multimodal and thereby capture the underlying
complex relationships among biological processes. Deep learning (DL)-based data fusion …

Trustworthy llms: a survey and guideline for evaluating large language models' alignment

Y Liu, Y Yao, JF Ton, X Zhang, R Guo, H Cheng… - arxiv preprint arxiv …, 2023 - arxiv.org
Ensuring alignment, which refers to making models behave in accordance with human
intentions [1, 2], has become a critical task before deploying large language models (LLMs) …

Dytox: Transformers for continual learning with dynamic token expansion

A Douillard, A Ramé, G Couairon… - Proceedings of the …, 2022 - openaccess.thecvf.com
Deep network architectures struggle to continually learn new tasks without forgetting the
previous tasks. A recent trend indicates that dynamic architectures based on an expansion …

Attention bottlenecks for multimodal fusion

A Nagrani, S Yang, A Arnab, A Jansen… - Advances in neural …, 2021 - proceedings.neurips.cc
Humans perceive the world by concurrently processing and fusing high-dimensional inputs
from multiple modalities such as vision and audio. Machine perception models, in stark …

AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture

J Su, X Zhu, S Li, WH Chen - Neurocomputing, 2023 - Elsevier
Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural
costs and environmental footprints, and therefore is attracting ever-increasing interests in …

Task-oriented multi-user semantic communications

H **e, Z Qin, X Tao, KB Letaief - IEEE Journal on Selected …, 2022 - ieeexplore.ieee.org
While semantic communications have shown the potential in the case of single-modal single-
users, its applications to the multi-user scenario remain limited. In this paper, we investigate …

[HTML][HTML] Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues

A Gupta, A Anpalagan, L Guan, AS Khwaja - Array, 2021 - Elsevier
This article presents a comprehensive survey of deep learning applications for object
detection and scene perception in autonomous vehicles. Unlike existing review papers, we …

Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling

YP Zhang, XY Zhang, YT Cheng, B Li, XZ Teng… - Military Medical …, 2023 - Springer
Modern medicine is reliant on various medical imaging technologies for non-invasively
observing patients' anatomy. However, the interpretation of medical images can be highly …

Deep learning for geophysics: Current and future trends

S Yu, J Ma - Reviews of Geophysics, 2021 - Wiley Online Library
Recently deep learning (DL), as a new data‐driven technique compared to conventional
approaches, has attracted increasing attention in geophysical community, resulting in many …