Surface engineering toward stable lithium metal anodes

G Lu, J Nai, D Luan, X Tao, XW Lou - Science Advances, 2023 - science.org
The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites
caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of …

Advances in batteries, battery modeling, battery management system, battery thermal management, SOC, SOH, and charge/discharge characteristics in EV …

RR Kumar, C Bharatiraja, K Udhayakumar… - Ieee …, 2023 - ieeexplore.ieee.org
The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift
in the automobile industry, replacing conventional diesel and gasoline-powered vehicles …

Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode

C Chen, J Zhang, B Hu, Q Liang, X **ong - Nature communications, 2023 - nature.com
Constructing a stable artificial solid-electrolyte interphase has become one of the most
effective strategies to overcome the poor reversibility of lithium metal anode, yet the …

A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes

S Li, J Huang, Y Cui, S Liu, Z Chen, W Huang… - Nature …, 2022 - nature.com
The low cycling efficiency and uncontrolled dendrite growth resulting from an unstable and
heterogeneous lithium–electrolyte interface have largely hindered the practical application …

All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design

C Wang, J Liang, Y Zhao, M Zheng, X Li… - Energy & Environmental …, 2021 - pubs.rsc.org
Sulfide electrolyte (SE)-based all-solid-state lithium batteries (ASSLBs) have gained
worldwide attention because of their instrinsic safety and higher energy density over …

Recent progress in understanding solid electrolyte interphase on lithium metal anodes

H Wu, H Jia, C Wang, JG Zhang… - Advanced Energy …, 2021 - Wiley Online Library
Lithium metal batteries (LMBs) are one of the most promising candidates for next‐generation
high‐energy‐density rechargeable batteries. Solid electrolyte interphase (SEI) on Li metal …

Towards practical lithium-metal anodes

X Zhang, Y Yang, Z Zhou - Chemical Society Reviews, 2020 - pubs.rsc.org
Lithium-ion batteries have had a tremendous impact on several sectors of our society;
however, the intrinsic limitations of Li-ion chemistry limits their ability to meet the increasing …

Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields

P Zou, Y Sui, H Zhan, C Wang, HL **n… - Chemical …, 2021 - ACS Publications
Lithium (Li) metal, a typical alkaline metal, has been hailed as the “holy grail” anode material
for next generation batteries owing to its high theoretical capacity and low redox reaction …

Alloy‐type anodes for high‐performance rechargeable batteries

M Peng, K Shin, L Jiang, Y **, K Zeng… - Angewandte …, 2022 - Wiley Online Library
Alloy‐type anodes are one of the most promising classes of next‐generation anode
materials due to their ultrahigh theoretical capacity (2–10 times that of graphite). However …

Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery

W Guo, W Zhang, Y Si, D Wang, Y Fu… - Nature …, 2021 - nature.com
The interfacial instability of the lithium-metal anode and shuttling of lithium polysulfides in
lithium-sulfur (Li-S) batteries hinder the commercial application. Herein, we report a …