[HTML][HTML] AutoML: A systematic review on automated machine learning with neural architecture search

I Salehin, MS Islam, P Saha, SM Noman, A Tuni… - Journal of Information …, 2024 - Elsevier
Abstract AutoML (Automated Machine Learning) is an emerging field that aims to automate
the process of building machine learning models. AutoML emerged to increase productivity …

Learning from noisy labels with deep neural networks: A survey

H Song, M Kim, D Park, Y Shin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning has achieved remarkable success in numerous domains with help from large
amounts of big data. However, the quality of data labels is a concern because of the lack of …

Fine-grained image analysis with deep learning: A survey

XS Wei, YZ Song, O Mac Aodha, J Wu… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Fine-grained image analysis (FGIA) is a longstanding and fundamental problem in computer
vision and pattern recognition, and underpins a diverse set of real-world applications. The …

AutoML: A survey of the state-of-the-art

X He, K Zhao, X Chu - Knowledge-based systems, 2021 - Elsevier
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …

On the genealogy of machine learning datasets: A critical history of ImageNet

E Denton, A Hanna, R Amironesei, A Smart… - Big Data & …, 2021 - journals.sagepub.com
In response to growing concerns of bias, discrimination, and unfairness perpetuated by
algorithmic systems, the datasets used to train and evaluate machine learning models have …

A survey on deep learning: Algorithms, techniques, and applications

S Pouyanfar, S Sadiq, Y Yan, H Tian, Y Tao… - ACM computing …, 2018 - dl.acm.org
The field of machine learning is witnessing its golden era as deep learning slowly becomes
the leader in this domain. Deep learning uses multiple layers to represent the abstractions of …

Do better imagenet models transfer better?

S Kornblith, J Shlens, QV Le - Proceedings of the IEEE/CVF …, 2019 - openaccess.thecvf.com
Transfer learning is a cornerstone of computer vision, yet little work has been done to
evaluate the relationship between architecture and transfer. An implicit hypothesis in …

Probabilistic end-to-end noise correction for learning with noisy labels

K Yi, J Wu - Proceedings of the IEEE/CVF conference on …, 2019 - openaccess.thecvf.com
Deep learning has achieved excellent performance in various computer vision tasks, but
requires a lot of training examples with clean labels. It is easy to collect a dataset with noisy …

Image classification with deep learning in the presence of noisy labels: A survey

G Algan, I Ulusoy - Knowledge-Based Systems, 2021 - Elsevier
Image classification systems recently made a giant leap with the advancement of deep
neural networks. However, these systems require an excessive amount of labeled data to be …

Using satellite imagery to understand and promote sustainable development

M Burke, A Driscoll, DB Lobell, S Ermon - Science, 2021 - science.org
BACKGROUND Accurate and comprehensive measurements of a range of sustainable
development outcomes are fundamental inputs into both research and policy. For instance …