Scientific machine learning through physics–informed neural networks: Where we are and what's next

S Cuomo, VS Di Cola, F Giampaolo, G Rozza… - Journal of Scientific …, 2022 - Springer
Abstract Physics-Informed Neural Networks (PINN) are neural networks (NNs) that encode
model equations, like Partial Differential Equations (PDE), as a component of the neural …

A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities

H Li, Z Zhang, T Li, X Si - Mechanical Systems and Signal Processing, 2024 - Elsevier
Remaining useful life (RUL) prediction, known as 'prognostics', has long been recognized as
one of the key technologies in prognostics and health management (PHM) to maintain the …

An expert's guide to training physics-informed neural networks

S Wang, S Sankaran, H Wang, P Perdikaris - arxiv preprint arxiv …, 2023 - arxiv.org
Physics-informed neural networks (PINNs) have been popularized as a deep learning
framework that can seamlessly synthesize observational data and partial differential …

Respecting causality for training physics-informed neural networks

S Wang, S Sankaran, P Perdikaris - Computer Methods in Applied …, 2024 - Elsevier
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this
date PINNs have not been successful in simulating dynamical systems whose solution …

Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems

J Yu, L Lu, X Meng, GE Karniadakis - Computer Methods in Applied …, 2022 - Elsevier
Deep learning has been shown to be an effective tool in solving partial differential equations
(PDEs) through physics-informed neural networks (PINNs). PINNs embed the PDE residual …

Characterizing possible failure modes in physics-informed neural networks

A Krishnapriyan, A Gholami, S Zhe… - Advances in neural …, 2021 - proceedings.neurips.cc
Recent work in scientific machine learning has developed so-called physics-informed neural
network (PINN) models. The typical approach is to incorporate physical domain knowledge …

Self-adaptive loss balanced physics-informed neural networks

Z **ang, W Peng, X Liu, W Yao - Neurocomputing, 2022 - Elsevier
Physics-informed neural networks (PINNs) have received significant attention as a
representative deep learning-based technique for solving partial differential equations …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

Learning the solution operator of parametric partial differential equations with physics-informed DeepONets

S Wang, H Wang, P Perdikaris - Science advances, 2021 - science.org
Partial differential equations (PDEs) play a central role in the mathematical analysis and
modeling of complex dynamic processes across all corners of science and engineering …

[HTML][HTML] Physics-informed neural networks as surrogate models of hydrodynamic simulators

J Donnelly, A Daneshkhah, S Abolfathi - Science of the Total Environment, 2024 - Elsevier
In response to growing concerns surrounding the relationship between climate change and
escalating flood risk, there is an increasing urgency to develop precise and rapid flood …