[HTML][HTML] A systematic review of Explainable Artificial Intelligence models and applications: Recent developments and future trends

A Saranya, R Subhashini - Decision analytics journal, 2023 - Elsevier
Artificial Intelligence (AI) uses systems and machines to simulate human intelligence and
solve common real-world problems. Machine learning and deep learning are Artificial …

[HTML][HTML] Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

BHM Van der Velden, HJ Kuijf, KGA Gilhuijs… - Medical Image …, 2022 - Elsevier
With an increase in deep learning-based methods, the call for explainability of such methods
grows, especially in high-stakes decision making areas such as medical image analysis …

[HTML][HTML] Transparency of deep neural networks for medical image analysis: A review of interpretability methods

Z Salahuddin, HC Woodruff, A Chatterjee… - Computers in biology and …, 2022 - Elsevier
Artificial Intelligence (AI) has emerged as a useful aid in numerous clinical applications for
diagnosis and treatment decisions. Deep neural networks have shown the same or better …

Explainable deep learning models in medical image analysis

A Singh, S Sengupta, V Lakshminarayanan - Journal of imaging, 2020 - mdpi.com
Deep learning methods have been very effective for a variety of medical diagnostic tasks
and have even outperformed human experts on some of those. However, the black-box …

A survey on explainable artificial intelligence (xai): Toward medical xai

E Tjoa, C Guan - IEEE transactions on neural networks and …, 2020 - ieeexplore.ieee.org
Recently, artificial intelligence and machine learning in general have demonstrated
remarkable performances in many tasks, from image processing to natural language …

Assessing the trustworthiness of saliency maps for localizing abnormalities in medical imaging

N Arun, N Gaw, P Singh, K Chang… - Radiology: Artificial …, 2021 - pubs.rsna.org
Purpose To evaluate the trustworthiness of saliency maps for abnormality localization in
medical imaging. Materials and Methods Using two large publicly available radiology …

Deep learning for Alzheimer's disease diagnosis: A survey

M Khojaste-Sarakhsi, SS Haghighi… - Artificial intelligence in …, 2022 - Elsevier
Alzheimer's Disease (AD) is an irreversible neurodegenerative disease that results in a
progressive decline in cognitive abilities. Since AD starts several years before the onset of …

Benchmarking saliency methods for chest X-ray interpretation

A Saporta, X Gui, A Agrawal, A Pareek… - Nature Machine …, 2022 - nature.com
Saliency methods, which produce heat maps that highlight the areas of the medical image
that influence model prediction, are often presented to clinicians as an aid in diagnostic …

Explainable deep learning methods in medical image classification: A survey

C Patrício, JC Neves, LF Teixeira - ACM Computing Surveys, 2023 - dl.acm.org
The remarkable success of deep learning has prompted interest in its application to medical
imaging diagnosis. Even though state-of-the-art deep learning models have achieved …

Doubly right object recognition: A why prompt for visual rationales

C Mao, R Teotia, A Sundar, S Menon… - Proceedings of the …, 2023 - openaccess.thecvf.com
Many visual recognition models are evaluated only on their classification accuracy, a metric
for which they obtain strong performance. In this paper, we investigate whether computer …