Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces
We prove the equivalence of the curvature-dimension bounds of Lott–Sturm–Villani (via
entropy and optimal transport) and of Bakry–Émery (via energy and Γ _2 Γ 2-calculus) in …
entropy and optimal transport) and of Bakry–Émery (via energy and Γ _2 Γ 2-calculus) in …
[HTML][HTML] Cones over metric measure spaces and the maximal diameter theorem
C Ketterer - Journal de Mathématiques Pures et Appliquées, 2015 - Elsevier
The main result of this article states that the (K, N)-cone over some metric measure space
satisfies the reduced Riemannian curvature-dimension condition RCD⁎(KN, N+ 1) if and …
satisfies the reduced Riemannian curvature-dimension condition RCD⁎(KN, N+ 1) if and …
Stratified spaces and synthetic Ricci curvature bounds
J Bertrand, C Ketterer, I Mondello… - Annales de l'Institut …, 2021 - numdam.org
Some of the many good features of the Riemannian curvature-dimension condition is that it
corresponds, in the setting of smooth Riemannian manifolds, to a standard lower Ricci …
corresponds, in the setting of smooth Riemannian manifolds, to a standard lower Ricci …
Inscribed radius bounds for lower Ricci bounded metric measure spaces with mean convex boundary
Consider an essentially nonbranching metric measure space with the measure contraction
property of Ohta and Sturm, or with a Ricci curvature lower bound in the sense of Lott, Sturm …
property of Ohta and Sturm, or with a Ricci curvature lower bound in the sense of Lott, Sturm …
Cohomogeneity one RCD-spaces
D Corro, J Núnez-Zimbrón… - arxiv preprint arxiv …, 2024 - arxiv.org
We study $\mathsf {RCD} $-spaces $(X, d,\mathfrak {m}) $ with group actions by isometries
preserving the reference measure $\mathfrak {m} $ and whose orbit space has dimension …
preserving the reference measure $\mathfrak {m} $ and whose orbit space has dimension …
The Heintze-Karcher inequality for metric measure spaces
C Ketterer - Proceedings of the American Mathematical Society, 2020 - ams.org
In this note we prove the Heintze-Karcher inequality in the context of essentially non-
branching metric measure spaces satisfying a lower Ricci curvature bound in the sense of …
branching metric measure spaces satisfying a lower Ricci curvature bound in the sense of …
[PDF][PDF] Inégalités isopérimétriques dans les espaces metriques mesurés
C Villani - Séminaire Bourbaki, bourbaki. ens. fr/TEXTES/1127 …, 2017 - bourbaki.ens.fr
Vers l'an 2000, le développement rapide de la théorie du transport optimal menait à la
découverte de liens étroits entre courbure de Ricci, entropie de Boltzmann et transport de …
découverte de liens étroits entre courbure de Ricci, entropie de Boltzmann et transport de …
On the geometry of Wasserstein barycenter I
BX Han, D Liu, Z Zhu - arxiv preprint arxiv:2412.01190, 2024 - arxiv.org
We study the Wasserstein barycenter problem in the setting of non-compact, non-smooth
extended metric measure spaces. We introduce a couple of new concepts and obtain the …
extended metric measure spaces. We introduce a couple of new concepts and obtain the …
Stability of metric measure spaces with integral Ricci curvature bounds
C Ketterer - Journal of Functional Analysis, 2021 - Elsevier
In this article we study stability and compactness wrt measured Gromov-Hausdorff
convergence of smooth metric measure spaces with integral Ricci curvature bounds. More …
convergence of smooth metric measure spaces with integral Ricci curvature bounds. More …
Bakry–Émery Ricci Curvature Bounds for Doubly Warped Products of Weighted Spaces
Z Fathi, S Lakzian - The Journal of Geometric Analysis, 2022 - Springer
We introduce a notion of doubly warped product of weighted graphs that is consistent with
the doubly warped product in the Riemannian setting. We establish various discrete Bakry …
the doubly warped product in the Riemannian setting. We establish various discrete Bakry …