On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces

M Erbar, K Kuwada, KT Sturm - Inventiones mathematicae, 2015 - Springer
We prove the equivalence of the curvature-dimension bounds of Lott–Sturm–Villani (via
entropy and optimal transport) and of Bakry–Émery (via energy and Γ _2 Γ 2-calculus) in …

[HTML][HTML] Cones over metric measure spaces and the maximal diameter theorem

C Ketterer - Journal de Mathématiques Pures et Appliquées, 2015 - Elsevier
The main result of this article states that the (K, N)-cone over some metric measure space
satisfies the reduced Riemannian curvature-dimension condition RCD⁎(KN, N+ 1) if and …

Stratified spaces and synthetic Ricci curvature bounds

J Bertrand, C Ketterer, I Mondello… - Annales de l'Institut …, 2021 - numdam.org
Some of the many good features of the Riemannian curvature-dimension condition is that it
corresponds, in the setting of smooth Riemannian manifolds, to a standard lower Ricci …

Inscribed radius bounds for lower Ricci bounded metric measure spaces with mean convex boundary

A Burtscher, C Ketterer, RJ McCann… - … Integrability and Geometry …, 2020 - emis.de
Consider an essentially nonbranching metric measure space with the measure contraction
property of Ohta and Sturm, or with a Ricci curvature lower bound in the sense of Lott, Sturm …

Cohomogeneity one RCD-spaces

D Corro, J Núnez-Zimbrón… - arxiv preprint arxiv …, 2024 - arxiv.org
We study $\mathsf {RCD} $-spaces $(X, d,\mathfrak {m}) $ with group actions by isometries
preserving the reference measure $\mathfrak {m} $ and whose orbit space has dimension …

The Heintze-Karcher inequality for metric measure spaces

C Ketterer - Proceedings of the American Mathematical Society, 2020 - ams.org
In this note we prove the Heintze-Karcher inequality in the context of essentially non-
branching metric measure spaces satisfying a lower Ricci curvature bound in the sense of …

[PDF][PDF] Inégalités isopérimétriques dans les espaces metriques mesurés

C Villani - Séminaire Bourbaki, bourbaki. ens. fr/TEXTES/1127 …, 2017 - bourbaki.ens.fr
Vers l'an 2000, le développement rapide de la théorie du transport optimal menait à la
découverte de liens étroits entre courbure de Ricci, entropie de Boltzmann et transport de …

On the geometry of Wasserstein barycenter I

BX Han, D Liu, Z Zhu - arxiv preprint arxiv:2412.01190, 2024 - arxiv.org
We study the Wasserstein barycenter problem in the setting of non-compact, non-smooth
extended metric measure spaces. We introduce a couple of new concepts and obtain the …

Stability of metric measure spaces with integral Ricci curvature bounds

C Ketterer - Journal of Functional Analysis, 2021 - Elsevier
In this article we study stability and compactness wrt measured Gromov-Hausdorff
convergence of smooth metric measure spaces with integral Ricci curvature bounds. More …

Bakry–Émery Ricci Curvature Bounds for Doubly Warped Products of Weighted Spaces

Z Fathi, S Lakzian - The Journal of Geometric Analysis, 2022 - Springer
We introduce a notion of doubly warped product of weighted graphs that is consistent with
the doubly warped product in the Riemannian setting. We establish various discrete Bakry …