Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A survey on graph neural networks and graph transformers in computer vision: A task-oriented perspective
Graph Neural Networks (GNNs) have gained momentum in graph representation learning
and boosted the state of the art in a variety of areas, such as data mining (eg, social network …
and boosted the state of the art in a variety of areas, such as data mining (eg, social network …
Deep learning implementation of image segmentation in agricultural applications: A comprehensive review
L Lei, Q Yang, L Yang, T Shen, R Wang… - Artificial Intelligence …, 2024 - Springer
Image segmentation is a crucial task in computer vision, which divides a digital image into
multiple segments and objects. In agriculture, image segmentation is extensively used for …
multiple segments and objects. In agriculture, image segmentation is extensively used for …
Transformer-based visual segmentation: A survey
Visual segmentation seeks to partition images, video frames, or point clouds into multiple
segments or groups. This technique has numerous real-world applications, such as …
segments or groups. This technique has numerous real-world applications, such as …
Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with
an encoder-decoder architecture. The encoder progressively reduces the spatial resolution …
an encoder-decoder architecture. The encoder progressively reduces the spatial resolution …
A survey on vision transformer
Transformer, first applied to the field of natural language processing, is a type of deep neural
network mainly based on the self-attention mechanism. Thanks to its strong representation …
network mainly based on the self-attention mechanism. Thanks to its strong representation …
Exploring cross-image pixel contrast for semantic segmentation
Current semantic segmentation methods focus only on mining" local" context, ie,
dependencies between pixels within individual images, by context-aggregation modules …
dependencies between pixels within individual images, by context-aggregation modules …
Strip pooling: Rethinking spatial pooling for scene parsing
Spatial pooling has been proven highly effective to capture long-range contextual
information for pixel-wise prediction tasks, such as scene parsing. In this paper, beyond …
information for pixel-wise prediction tasks, such as scene parsing. In this paper, beyond …
Superglue: Learning feature matching with graph neural networks
This paper introduces SuperGlue, a neural network that matches two sets of local features
by jointly finding correspondences and rejecting non-matchable points. Assignments are …
by jointly finding correspondences and rejecting non-matchable points. Assignments are …
Object-contextual representations for semantic segmentation
In this paper, we study the context aggregation problem in semantic segmentation.
Motivated by that the label of a pixel is the category of the object that the pixel belongs to, we …
Motivated by that the label of a pixel is the category of the object that the pixel belongs to, we …
Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation
This paper focuses on the unsupervised domain adaptation of transferring the knowledge
from the source domain to the target domain in the context of semantic segmentation …
from the source domain to the target domain in the context of semantic segmentation …