A survey on graph neural networks and graph transformers in computer vision: A task-oriented perspective

C Chen, Y Wu, Q Dai, HY Zhou, M Xu… - … on Pattern Analysis …, 2024 - ieeexplore.ieee.org
Graph Neural Networks (GNNs) have gained momentum in graph representation learning
and boosted the state of the art in a variety of areas, such as data mining (eg, social network …

Deep learning implementation of image segmentation in agricultural applications: A comprehensive review

L Lei, Q Yang, L Yang, T Shen, R Wang… - Artificial Intelligence …, 2024 - Springer
Image segmentation is a crucial task in computer vision, which divides a digital image into
multiple segments and objects. In agriculture, image segmentation is extensively used for …

Transformer-based visual segmentation: A survey

X Li, H Ding, H Yuan, W Zhang, J Pang… - IEEE transactions on …, 2024 - ieeexplore.ieee.org
Visual segmentation seeks to partition images, video frames, or point clouds into multiple
segments or groups. This technique has numerous real-world applications, such as …

Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers

S Zheng, J Lu, H Zhao, X Zhu, Z Luo… - Proceedings of the …, 2021 - openaccess.thecvf.com
Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with
an encoder-decoder architecture. The encoder progressively reduces the spatial resolution …

A survey on vision transformer

K Han, Y Wang, H Chen, X Chen, J Guo… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Transformer, first applied to the field of natural language processing, is a type of deep neural
network mainly based on the self-attention mechanism. Thanks to its strong representation …

Exploring cross-image pixel contrast for semantic segmentation

W Wang, T Zhou, F Yu, J Dai… - Proceedings of the …, 2021 - openaccess.thecvf.com
Current semantic segmentation methods focus only on mining" local" context, ie,
dependencies between pixels within individual images, by context-aggregation modules …

Strip pooling: Rethinking spatial pooling for scene parsing

Q Hou, L Zhang, MM Cheng… - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
Spatial pooling has been proven highly effective to capture long-range contextual
information for pixel-wise prediction tasks, such as scene parsing. In this paper, beyond …

Superglue: Learning feature matching with graph neural networks

PE Sarlin, D DeTone, T Malisiewicz… - Proceedings of the …, 2020 - openaccess.thecvf.com
This paper introduces SuperGlue, a neural network that matches two sets of local features
by jointly finding correspondences and rejecting non-matchable points. Assignments are …

Object-contextual representations for semantic segmentation

Y Yuan, X Chen, J Wang - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
In this paper, we study the context aggregation problem in semantic segmentation.
Motivated by that the label of a pixel is the category of the object that the pixel belongs to, we …

Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation

Z Zheng, Y Yang - International Journal of Computer Vision, 2021 - Springer
This paper focuses on the unsupervised domain adaptation of transferring the knowledge
from the source domain to the target domain in the context of semantic segmentation …