Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe
Quantum optimal control, a toolbox for devising and implementing the shapes of external
fields that accomplish given tasks in the operation of a quantum device in the best way …
fields that accomplish given tasks in the operation of a quantum device in the best way …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …
through a parametrized quantum circuit, and measuring the expectation value of some …
Quantum computing for finance
Quantum computers are expected to surpass the computational capabilities of classical
computers and have a transformative impact on numerous industry sectors. We present a …
computers and have a transformative impact on numerous industry sectors. We present a …
A unified theory of barren plateaus for deep parametrized quantum circuits
AFV CoverSheet Page 1 LA-UR-23-30483 Accepted Manuscript A Lie algebraic theory of
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …
barren plateaus for deep parameterized quantum circuits Cerezo de la Roca, Marco Vinicio …
Group-invariant quantum machine learning
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …
Theory of overparametrization in quantum neural networks
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is
exciting. Understanding how QNN properties (for example, the number of parameters M) …
exciting. Understanding how QNN properties (for example, the number of parameters M) …
Theory for equivariant quantum neural networks
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …
face trainability and generalization issues. Inspired by a similar problem, recent …
Avoiding barren plateaus using classical shadows
Variational quantum algorithms are promising algorithms for achieving quantum advantage
on near-term devices. The quantum hardware is used to implement a variational wave …
on near-term devices. The quantum hardware is used to implement a variational wave …