Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature Computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Quantum computing for finance

D Herman, C Googin, X Liu, Y Sun, A Galda… - Nature Reviews …, 2023 - nature.com
Quantum computers are expected to surpass the computational capabilities of classical
computers and have a transformative impact on numerous industry sectors. We present a …

A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits

M Ragone, BN Bakalov, F Sauvage, AF Kemper… - Nature …, 2024 - nature.com
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …

Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe

CP Koch, U Boscain, T Calarco, G Dirr… - EPJ Quantum …, 2022 - epjqt.epj.org
Quantum optimal control, a toolbox for devising and implementing the shapes of external
fields that accomplish given tasks in the operation of a quantum device in the best way …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

Group-invariant quantum machine learning

M Larocca, F Sauvage, FM Sbahi, G Verdon, PJ Coles… - PRX Quantum, 2022 - APS
Quantum machine learning (QML) models are aimed at learning from data encoded in
quantum states. Recently, it has been shown that models with little to no inductive biases (ie …

Theory for equivariant quantum neural networks

QT Nguyen, L Schatzki, P Braccia, M Ragone, PJ Coles… - PRX Quantum, 2024 - APS
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …

Quantum computing for high-energy physics: State of the art and challenges

A Di Meglio, K Jansen, I Tavernelli, C Alexandrou… - PRX Quantum, 2024 - APS
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …

Characterizing barren plateaus in quantum ansätze with the adjoint representation

E Fontana, D Herman, S Chakrabarti, N Kumar… - Nature …, 2024 - nature.com
Variational quantum algorithms, a popular heuristic for near-term quantum computers, utilize
parameterized quantum circuits which naturally express Lie groups. It has been postulated …

Theory of overparametrization in quantum neural networks

M Larocca, N Ju, D García-Martín, PJ Coles… - Nature Computational …, 2023 - nature.com
The prospect of achieving quantum advantage with quantum neural networks (QNNs) is
exciting. Understanding how QNN properties (for example, the number of parameters M) …