Deep learning modelling techniques: current progress, applications, advantages, and challenges
Deep learning (DL) is revolutionizing evidence-based decision-making techniques that can
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
be applied across various sectors. Specifically, it possesses the ability to utilize two or more …
A complete survey on generative ai (aigc): Is chatgpt from gpt-4 to gpt-5 all you need?
As ChatGPT goes viral, generative AI (AIGC, aka AI-generated content) has made headlines
everywhere because of its ability to analyze and create text, images, and beyond. With such …
everywhere because of its ability to analyze and create text, images, and beyond. With such …
[HTML][HTML] A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories
Pancreatic cancer is an aggressive disease that typically presents late with poor outcomes,
indicating a pronounced need for early detection. In this study, we applied artificial …
indicating a pronounced need for early detection. In this study, we applied artificial …
Bevformer: learning bird's-eye-view representation from lidar-camera via spatiotemporal transformers
Multi-modality fusion strategy is currently the de-facto most competitive solution for 3D
perception tasks. In this work, we present a new framework termed BEVFormer, which learns …
perception tasks. In this work, we present a new framework termed BEVFormer, which learns …
Petr: Position embedding transformation for multi-view 3d object detection
In this paper, we develop position embedding transformation (PETR) for multi-view 3D
object detection. PETR encodes the position information of 3D coordinates into image …
object detection. PETR encodes the position information of 3D coordinates into image …
Transformers in time series: A survey
Transformers have achieved superior performances in many tasks in natural language
processing and computer vision, which also triggered great interest in the time series …
processing and computer vision, which also triggered great interest in the time series …
Instant neural graphics primitives with a multiresolution hash encoding
Neural graphics primitives, parameterized by fully connected neural networks, can be costly
to train and evaluate. We reduce this cost with a versatile new input encoding that permits …
to train and evaluate. We reduce this cost with a versatile new input encoding that permits …
A survey on trajectory-prediction methods for autonomous driving
In order to drive safely in a dynamic environment, autonomous vehicles should be able to
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …
predict the future states of traffic participants nearby, especially surrounding vehicles, similar …
Shifting machine learning for healthcare from development to deployment and from models to data
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …
the automation of physician tasks as well as enhancements in clinical capabilities and …
Transformer quality in linear time
We revisit the design choices in Transformers, and propose methods to address their
weaknesses in handling long sequences. First, we propose a simple layer named gated …
weaknesses in handling long sequences. First, we propose a simple layer named gated …