Algorithmic fairness in artificial intelligence for medicine and healthcare
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …
Federated learning for internet of things: A comprehensive survey
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …
Advances and open problems in federated learning
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …
devices or whole organizations) collaboratively train a model under the orchestration of a …
Federated learning: Challenges, methods, and future directions
Federated learning involves training statistical models over remote devices or siloed data
centers, such as mobile phones or hospitals, while kee** data localized. Training in …
centers, such as mobile phones or hospitals, while kee** data localized. Training in …
A survey on federated learning
C Zhang, Y **e, H Bai, B Yu, W Li, Y Gao - Knowledge-Based Systems, 2021 - Elsevier
Federated learning is a set-up in which multiple clients collaborate to solve machine
learning problems, which is under the coordination of a central aggregator. This setting also …
learning problems, which is under the coordination of a central aggregator. This setting also …
Tackling the objective inconsistency problem in heterogeneous federated optimization
In federated learning, heterogeneity in the clients' local datasets and computation speeds
results in large variations in the number of local updates performed by each client in each …
results in large variations in the number of local updates performed by each client in each …
Federated learning for smart healthcare: A survey
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …
Federated learning on non-IID data: A survey
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …
preservation. However, models trained in federated learning usually have worse …
On the convergence of fedavg on non-iid data
Federated learning enables a large amount of edge computing devices to jointly learn a
model without data sharing. As a leading algorithm in this setting, Federated Averaging …
model without data sharing. As a leading algorithm in this setting, Federated Averaging …
[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …
models to be trained on client devices while ensuring the privacy of user data. Model …