Re-thinking data strategy and integration for artificial intelligence: concepts, opportunities, and challenges

A Aldoseri, KN Al-Khalifa, AM Hamouda - Applied Sciences, 2023 - mdpi.com
The use of artificial intelligence (AI) is becoming more prevalent across industries such as
healthcare, finance, and transportation. Artificial intelligence is based on the analysis of …

Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey

P Qi, D Chiaro, A Guzzo, M Ianni, G Fortino… - Future Generation …, 2024 - Elsevier
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …

A survey on federated learning: challenges and applications

J Wen, Z Zhang, Y Lan, Z Cui, J Cai… - International Journal of …, 2023 - Springer
Federated learning (FL) is a secure distributed machine learning paradigm that addresses
the issue of data silos in building a joint model. Its unique distributed training mode and the …

Federated learning review: Fundamentals, enabling technologies, and future applications

S Banabilah, M Aloqaily, E Alsayed, N Malik… - Information processing & …, 2022 - Elsevier
Federated Learning (FL) has been foundational in improving the performance of a wide
range of applications since it was first introduced by Google. Some of the most prominent …

A state-of-the-art survey on solving non-iid data in federated learning

X Ma, J Zhu, Z Lin, S Chen, Y Qin - Future Generation Computer Systems, 2022 - Elsevier
Federated Learning (FL) proposed in recent years has received significant attention from
researchers in that it can enable multiple clients to cooperatively train global models without …

Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things

B Ghimire, DB Rawat - IEEE Internet of Things Journal, 2022 - ieeexplore.ieee.org
Decentralized paradigm in the field of cybersecurity and machine learning (ML) for the
emerging Internet of Things (IoT) has gained a lot of attention from the government …

Federated learning for smart healthcare: A survey

DC Nguyen, QV Pham, PN Pathirana, M Ding… - ACM Computing …, 2022 - dl.acm.org
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …

Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions

Q Duan, J Huang, S Hu, R Deng… - … Surveys & Tutorials, 2023 - ieeexplore.ieee.org
Full leverage of the huge volume of data generated on a large number of user devices for
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …