[PDF][PDF] Unitary Approximations of Koopman Operators

M Colbrook - Dynamical Systems, 2023 - damtp.cam.ac.uk
Unitary Approximations of Koopman Operators Page 1 Matthew Colbrook University of
Cambridge 20/03/2024 C., "The mpEDMD Algorithm for Data-Driven Computations of …

[PDF][PDF] Polar Decompositions of Koopman Operators

M Colbrook - Dynamical Systems, 2023 - damtp.cam.ac.uk
Polar Decompositions of Koopman Operators Page 1 Matthew Colbrook University of
Cambridge 29/02/2024 C., "The mpEDMD Algorithm for Data-Driven Computations of …

[PDF][PDF] Geometric integration meets data-driven dynamical systems

M Colbrook - Dynamical Systems, 2023 - damtp.cam.ac.uk
Geometric integration meets data-driven dynamical systems Page 1 Matthew Colbrook University
of Cambridge 4/04/2024 C., "The mpEDMD Algorithm for Data-Driven Computations of …

[PDF][PDF] Discretization woes for NLEVPs

M Colbrook - damtp.cam.ac.uk
KELDYSH's THEOREM: Suppose Spess 𝑇∩ Ω=∅. Then for 𝑧∈ Ω\Sp 𝑇 𝑇 (𝑧)− 1= 𝑉 (𝑧−
𝐽)− 1 𝑊∗+ 𝑅 (𝑧)• 𝑚 is sum of all algebraic multiplicities of eigenvalues inside Ω.• 𝑉 & 𝑊 are …

[PDF][PDF] Verifying data-driven computations of Koopman spectra

M Colbrook - damtp.cam.ac.uk
Verifying data-driven computations of Koopman spectra Page 1 Matthew Colbrook University
of Cambridge 19/09/2023 Joint work with: • C., Townsend, “Rigorous data-driven computation …

[PDF][PDF] Four examples of discretization issues for Nonlinear Eigenvalue Problems

M Colbrook - damtp.cam.ac.uk
Four examples of discretization issues for Nonlinear Eigenvalue Problems Page 1 Matthew
Colbrook University of Cambridge 16/08/2023 Joint work with Alex Townsend (Cornell) C …

[PDF][PDF] Taming Discretization Challenges for Nonlinear Eigenvalue Problems!

M Colbrook - damtp.cam.ac.uk
Taming Discretization Challenges for Nonlinear Eigenvalue Problems Page 1 Matthew
Colbrook University of Cambridge 26/07/2023 Joint work with Alex Townsend (Cornell) C …

[PDF][PDF] Verified Koopman Spectra through Operator Folding

M Colbrook - damtp.cam.ac.uk
Verified Koopman Spectra through Operator Folding Page 1 Matthew Colbrook University of
Cambridge 20/09/2023 Joint work with: • C., Townsend, “Rigorous data-driven computation of …

[PDF][PDF] FoCM: Solve-the-discretize for NLEPS

M Colbrook - damtp.cam.ac.uk
KELDYSH's THEOREM: Suppose Spess 𝑇∩ Ω=∅. Then for 𝑧∈ Ω\Sp 𝑇 𝑇 (𝑧)− 1= 𝑉 (𝑧−
𝐽)− 1 𝑊∗+ 𝑅 (𝑧)• 𝑚 is sum of all algebraic multiplicities of eigenvalues inside Ω.• 𝑉 & 𝑊 are …