A review of cooperative multi-agent deep reinforcement learning
Abstract Deep Reinforcement Learning has made significant progress in multi-agent
systems in recent years. The aim of this review article is to provide an overview of recent …
systems in recent years. The aim of this review article is to provide an overview of recent …
Deep multiagent reinforcement learning: Challenges and directions
This paper surveys the field of deep multiagent reinforcement learning (RL). The
combination of deep neural networks with RL has gained increased traction in recent years …
combination of deep neural networks with RL has gained increased traction in recent years …
Transfer learning in deep reinforcement learning: A survey
Reinforcement learning is a learning paradigm for solving sequential decision-making
problems. Recent years have witnessed remarkable progress in reinforcement learning …
problems. Recent years have witnessed remarkable progress in reinforcement learning …
Q-learning algorithms: A comprehensive classification and applications
Q-learning is arguably one of the most applied representative reinforcement learning
approaches and one of the off-policy strategies. Since the emergence of Q-learning, many …
approaches and one of the off-policy strategies. Since the emergence of Q-learning, many …
A survey and critique of multiagent deep reinforcement learning
Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has
led to a dramatic increase in the number of applications and methods. Recent works have …
led to a dramatic increase in the number of applications and methods. Recent works have …
Value-decomposition networks for cooperative multi-agent learning
We study the problem of cooperative multi-agent reinforcement learning with a single joint
reward signal. This class of learning problems is difficult because of the often large …
reward signal. This class of learning problems is difficult because of the often large …
Social influence as intrinsic motivation for multi-agent deep reinforcement learning
We propose a unified mechanism for achieving coordination and communication in Multi-
Agent Reinforcement Learning (MARL), through rewarding agents for having causal …
Agent Reinforcement Learning (MARL), through rewarding agents for having causal …
A survey on transfer learning for multiagent reinforcement learning systems
Multiagent Reinforcement Learning (RL) solves complex tasks that require coordination with
other agents through autonomous exploration of the environment. However, learning a …
other agents through autonomous exploration of the environment. However, learning a …
Multi-objective multi-agent decision making: a utility-based analysis and survey
The majority of multi-agent system implementations aim to optimise agents' policies with
respect to a single objective, despite the fact that many real-world problem domains are …
respect to a single objective, despite the fact that many real-world problem domains are …
Incremental incentive mechanism design for diversified consumers in demand response
Demand response has been proven to be an effective way to improve energy utilization
efficiency. It is notable that the diversified characteristics of residential consumers, which …
efficiency. It is notable that the diversified characteristics of residential consumers, which …