Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
How variability shapes learning and generalization
Learning is using past experiences to inform new behaviors and actions. Because all
experiences are unique, learning always requires some generalization. An effective way of …
experiences are unique, learning always requires some generalization. An effective way of …
Inductive biases for deep learning of higher-level cognition
A fascinating hypothesis is that human and animal intelligence could be explained by a few
principles (rather than an encyclopaedic list of heuristics). If that hypothesis was correct, we …
principles (rather than an encyclopaedic list of heuristics). If that hypothesis was correct, we …
Human-like systematic generalization through a meta-learning neural network
The power of human language and thought arises from systematic compositionality—the
algebraic ability to understand and produce novel combinations from known components …
algebraic ability to understand and produce novel combinations from known components …
Guiding pretraining in reinforcement learning with large language models
Reinforcement learning algorithms typically struggle in the absence of a dense, well-shaped
reward function. Intrinsically motivated exploration methods address this limitation by …
reward function. Intrinsically motivated exploration methods address this limitation by …
Using cognitive psychology to understand GPT-3
We study GPT-3, a recent large language model, using tools from cognitive psychology.
More specifically, we assess GPT-3's decision-making, information search, deliberation, and …
More specifically, we assess GPT-3's decision-making, information search, deliberation, and …
Interactive language: Talking to robots in real time
We present a framework for building interactive, real-time, natural language-instructable
robots in the real world, and we open source related assets (dataset, environment …
robots in the real world, and we open source related assets (dataset, environment …
Learning transferable visual models from natural language supervision
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. This restricted form of supervision limits their generality and usability since …
object categories. This restricted form of supervision limits their generality and usability since …
A survey of zero-shot generalisation in deep reinforcement learning
The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to
produce RL algorithms whose policies generalise well to novel unseen situations at …
produce RL algorithms whose policies generalise well to novel unseen situations at …
The next decade in AI: four steps towards robust artificial intelligence
G Marcus - arxiv preprint arxiv:2002.06177, 2020 - arxiv.org
Recent research in artificial intelligence and machine learning has largely emphasized
general-purpose learning and ever-larger training sets and more and more compute. In …
general-purpose learning and ever-larger training sets and more and more compute. In …
On the binding problem in artificial neural networks
Contemporary neural networks still fall short of human-level generalization, which extends
far beyond our direct experiences. In this paper, we argue that the underlying cause for this …
far beyond our direct experiences. In this paper, we argue that the underlying cause for this …