Deep learning on image denoising: An overview
Deep learning techniques have received much attention in the area of image denoising.
However, there are substantial differences in the various types of deep learning methods …
However, there are substantial differences in the various types of deep learning methods …
Artificial intelligence in the creative industries: a review
This paper reviews the current state of the art in artificial intelligence (AI) technologies and
applications in the context of the creative industries. A brief background of AI, and …
applications in the context of the creative industries. A brief background of AI, and …
Restormer: Efficient transformer for high-resolution image restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …
priors from large-scale data, these models have been extensively applied to image …
Swinir: Image restoration using swin transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-
quality images from low-quality images (eg, downscaled, noisy and compressed images) …
quality images from low-quality images (eg, downscaled, noisy and compressed images) …
Palette: Image-to-image diffusion models
This paper develops a unified framework for image-to-image translation based on
conditional diffusion models and evaluates this framework on four challenging image-to …
conditional diffusion models and evaluates this framework on four challenging image-to …
Residual dense network for image super-resolution
In this paper, we propose dense feature fusion (DFF) for image super-resolution (SR). As the
same content in different natural images often have various scales and angles of view …
same content in different natural images often have various scales and angles of view …
Efficient and explicit modelling of image hierarchies for image restoration
The aim of this paper is to propose a mechanism to efficiently and explicitly model image
hierarchies in the global, regional, and local range for image restoration. To achieve that, we …
hierarchies in the global, regional, and local range for image restoration. To achieve that, we …
Deep learning for image super-resolution: A survey
Image Super-Resolution (SR) is an important class of image processing techniqueso
enhance the resolution of images and videos in computer vision. Recent years have …
enhance the resolution of images and videos in computer vision. Recent years have …
Toward convolutional blind denoising of real photographs
While deep convolutional neural networks (CNNs) have achieved impressive success in
image denoising with additive white Gaussian noise (AWGN), their performance remains …
image denoising with additive white Gaussian noise (AWGN), their performance remains …
Attention-guided CNN for image denoising
Deep convolutional neural networks (CNNs) have attracted considerable interest in low-
level computer vision. Researches are usually devoted to improving the performance via …
level computer vision. Researches are usually devoted to improving the performance via …