A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations

H Cheng, M Zhang, JQ Shi - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Modern deep neural networks, particularly recent large language models, come with
massive model sizes that require significant computational and storage resources. To …

Deep learning for medical image-based cancer diagnosis

X Jiang, Z Hu, S Wang, Y Zhang - Cancers, 2023 - mdpi.com
Simple Summary Deep learning has succeeded greatly in medical image-based cancer
diagnosis. To help readers better understand the current research status and ideas, this …

Infogcn: Representation learning for human skeleton-based action recognition

H Chi, MH Ha, S Chi, SW Lee… - Proceedings of the …, 2022 - openaccess.thecvf.com
Human skeleton-based action recognition offers a valuable means to understand the
intricacies of human behavior because it can handle the complex relationships between …

[HTML][HTML] Review of image classification algorithms based on convolutional neural networks

L Chen, S Li, Q Bai, J Yang, S Jiang, Y Miao - Remote Sensing, 2021 - mdpi.com
Image classification has always been a hot research direction in the world, and the
emergence of deep learning has promoted the development of this field. Convolutional …

Single-source domain expansion network for cross-scene hyperspectral image classification

Y Zhang, W Li, W Sun, R Tao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Currently, cross-scene hyperspectral image (HSI) classification has drawn increasing
attention. It is necessary to train a model only on source domain (SD) and directly …

The neuroconnectionist research programme

A Doerig, RP Sommers, K Seeliger… - Nature Reviews …, 2023 - nature.com
Artificial neural networks (ANNs) inspired by biology are beginning to be widely used to
model behavioural and neural data, an approach we call 'neuroconnectionism'. ANNs have …

Birth of a transformer: A memory viewpoint

A Bietti, V Cabannes, D Bouchacourt… - Advances in …, 2023 - proceedings.neurips.cc
Large language models based on transformers have achieved great empirical successes.
However, as they are deployed more widely, there is a growing need to better understand …

[HTML][HTML] Pre-trained models: Past, present and future

X Han, Z Zhang, N Ding, Y Gu, X Liu, Y Huo, J Qiu… - AI Open, 2021 - Elsevier
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved
great success and become a milestone in the field of artificial intelligence (AI). Owing to …

[KNIHA][B] The principles of deep learning theory

DA Roberts, S Yaida, B Hanin - 2022 - cambridge.org
This textbook establishes a theoretical framework for understanding deep learning models
of practical relevance. With an approach that borrows from theoretical physics, Roberts and …

Is quantum advantage the right goal for quantum machine learning?

M Schuld, N Killoran - Prx Quantum, 2022 - APS
Machine learning is frequently listed among the most promising applications for quantum
computing. This is in fact a curious choice: the machine-learning algorithms of today are …