A comprehensive survey on support vector machine classification: Applications, challenges and trends

J Cervantes, F Garcia-Lamont, L Rodríguez-Mazahua… - Neurocomputing, 2020 - Elsevier
In recent years, an enormous amount of research has been carried out on support vector
machines (SVMs) and their application in several fields of science. SVMs are one of the …

[HTML][HTML] Machine learning and smart devices for diabetes management: Systematic review

MA Makroum, M Adda, A Bouzouane, H Ibrahim - Sensors, 2022 - mdpi.com
(1) Background: The use of smart devices to better manage diabetes has increased
significantly in recent years. These technologies have been introduced in order to make life …

River: machine learning for streaming data in python

J Montiel, M Halford, SM Mastelini, G Bolmier… - Journal of Machine …, 2021 - jmlr.org
River is a machine learning library for dynamic data streams and continual learning. It
provides multiple state-of-the-art learning methods, data generators/transformers …

Automated algorithm selection: Survey and perspectives

P Kerschke, HH Hoos, F Neumann… - Evolutionary …, 2019 - ieeexplore.ieee.org
It has long been observed that for practically any computational problem that has been
intensely studied, different instances are best solved using different algorithms. This is …

Scikit-multiflow: A multi-output streaming framework

J Montiel, J Read, A Bifet, T Abdessalem - Journal of Machine Learning …, 2018 - jmlr.org
scikit-multiflow is a framework for learning from data streams and multi-output learning in
Python. Conceived to serve as a platform to encourage the democratization of stream …

Machine learning for streaming data: state of the art, challenges, and opportunities

HM Gomes, J Read, A Bifet, JP Barddal… - ACM SIGKDD …, 2019 - dl.acm.org
Incremental learning, online learning, and data stream learning are terms commonly
associated with learning algorithms that update their models given a continuous influx of …

Spiking neural networks and online learning: An overview and perspectives

JL Lobo, J Del Ser, A Bifet, N Kasabov - Neural Networks, 2020 - Elsevier
Applications that generate huge amounts of data in the form of fast streams are becoming
increasingly prevalent, being therefore necessary to learn in an online manner. These …

Securing the smart grid: A comprehensive compilation of intrusion detection and prevention systems

PI Radoglou-Grammatikis, PG Sarigiannidis - Ieee Access, 2019 - ieeexplore.ieee.org
The smart grid (SG) paradigm is the next technological leap of the conventional electrical
grid, contributing to the protection of the physical environment and providing multiple …

Data stream analysis: Foundations, major tasks and tools

M Bahri, A Bifet, J Gama, HM Gomes… - … Reviews: Data Mining …, 2021 - Wiley Online Library
The significant growth of interconnected Internet‐of‐Things (IoT) devices, the use of social
networks, along with the evolution of technology in different domains, lead to a rise in the …

A reinforcement learning-variable neighborhood search method for the capacitated vehicle routing problem

P Kalatzantonakis, A Sifaleras, N Samaras - Expert Systems with …, 2023 - Elsevier
Finding the best sequence of local search operators that yields the optimal performance of
Variable Neighborhood Search (VNS) is an important open research question in the field of …