[HTML][HTML] Cybersecurity threats and their mitigation approaches using Machine Learning—A Review

M Ahsan, KE Nygard, R Gomes… - … of Cybersecurity and …, 2022 - mdpi.com
Machine learning is of rising importance in cybersecurity. The primary objective of applying
machine learning in cybersecurity is to make the process of malware detection more …

Reconfigurable intelligent surfaces: Principles and opportunities

Y Liu, X Liu, X Mu, T Hou, J Xu… - … surveys & tutorials, 2021 - ieeexplore.ieee.org
Reconfigurable intelligent surfaces (RISs), also known as intelligent reflecting surfaces
(IRSs), or large intelligent surfaces (LISs), 1 have received significant attention for their …

Discovering faster matrix multiplication algorithms with reinforcement learning

A Fawzi, M Balog, A Huang, T Hubert… - Nature, 2022 - nature.com
Improving the efficiency of algorithms for fundamental computations can have a widespread
impact, as it can affect the overall speed of a large amount of computations. Matrix …

Offline reinforcement learning with implicit q-learning

I Kostrikov, A Nair, S Levine - arxiv preprint arxiv:2110.06169, 2021 - arxiv.org
Offline reinforcement learning requires reconciling two conflicting aims: learning a policy that
improves over the behavior policy that collected the dataset, while at the same time …

Deep reinforcement learning at the edge of the statistical precipice

R Agarwal, M Schwarzer, PS Castro… - Advances in neural …, 2021 - proceedings.neurips.cc
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing
their relative performance on a large suite of tasks. Most published results on deep RL …

Decision transformer: Reinforcement learning via sequence modeling

L Chen, K Lu, A Rajeswaran, K Lee… - Advances in neural …, 2021 - proceedings.neurips.cc
We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence
modeling problem. This allows us to draw upon the simplicity and scalability of the …

Idql: Implicit q-learning as an actor-critic method with diffusion policies

P Hansen-Estruch, I Kostrikov, M Janner… - arxiv preprint arxiv …, 2023 - arxiv.org
Effective offline RL methods require properly handling out-of-distribution actions. Implicit Q-
learning (IQL) addresses this by training a Q-function using only dataset actions through a …

Mastering atari with discrete world models

D Hafner, T Lillicrap, M Norouzi, J Ba - arxiv preprint arxiv:2010.02193, 2020 - arxiv.org
Intelligent agents need to generalize from past experience to achieve goals in complex
environments. World models facilitate such generalization and allow learning behaviors …

Conservative q-learning for offline reinforcement learning

A Kumar, A Zhou, G Tucker… - Advances in neural …, 2020 - proceedings.neurips.cc
Effectively leveraging large, previously collected datasets in reinforcement learn-ing (RL) is
a key challenge for large-scale real-world applications. Offline RL algorithms promise to …

Autonomous navigation of stratospheric balloons using reinforcement learning

MG Bellemare, S Candido, PS Castro, J Gong… - Nature, 2020 - nature.com
Efficiently navigating a superpressure balloon in the stratosphere requires the integration of
a multitude of cues, such as wind speed and solar elevation, and the process is complicated …