Explainable AI (XAI): Core ideas, techniques, and solutions

R Dwivedi, D Dave, H Naik, S Singhal, R Omer… - ACM Computing …, 2023 - dl.acm.org
As our dependence on intelligent machines continues to grow, so does the demand for more
transparent and interpretable models. In addition, the ability to explain the model generally …

The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Advances and open problems in federated learning

P Kairouz, HB McMahan, B Avent… - … and trends® in …, 2021 - nowpublishers.com
Federated learning (FL) is a machine learning setting where many clients (eg, mobile
devices or whole organizations) collaboratively train a model under the orchestration of a …

Federated optimization in heterogeneous networks

T Li, AK Sahu, M Zaheer, M Sanjabi… - … of Machine learning …, 2020 - proceedings.mlsys.org
Federated Learning is a distributed learning paradigm with two key challenges that
differentiate it from traditional distributed optimization:(1) significant variability in terms of the …

Scaffold: Stochastic controlled averaging for federated learning

SP Karimireddy, S Kale, M Mohri… - International …, 2020 - proceedings.mlr.press
Federated learning is a key scenario in modern large-scale machine learning where the
data remains distributed over a large number of clients and the task is to learn a centralized …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

Group normalization

Y Wu, K He - Proceedings of the European conference on …, 2018 - openaccess.thecvf.com
Batch Normalization (BN) is a milestone technique in the development of deep learning,
enabling various networks to train. However, normalizing along the batch dimension …

Deep leakage from gradients

L Zhu, Z Liu, S Han - Advances in neural information …, 2019 - proceedings.neurips.cc
Passing gradient is a widely used scheme in modern multi-node learning system (eg,
distributed training, collaborative learning). In a long time, people used to believe that …

[BOOK][B] Neural networks and deep learning

CC Aggarwal - 2018 - Springer
“Any AI smart enough to pass a Turing test is smart enough to know to fail it.”–*** Ian
McDonald Neural networks were developed to simulate the human nervous system for …