Recent advances for quantum classifiers

W Li, DL Deng - Science China Physics, Mechanics & Astronomy, 2022 - Springer
Abstract Machine learning has achieved dramatic success in a broad spectrum of
applications. Its interplay with quantum physics may lead to unprecedented perspectives for …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

A comprehensive review of Quantum Machine Learning: from NISQ to Fault Tolerance

Y Wang, J Liu - Reports on Progress in Physics, 2024 - iopscience.iop.org
Quantum machine learning, which involves running machine learning algorithms on
quantum devices, has garnered significant attention in both academic and business circles …

Exponential concentration in quantum kernel methods

S Thanasilp, S Wang, M Cerezo, Z Holmes - Nature Communications, 2024 - nature.com
Abstract Kernel methods in Quantum Machine Learning (QML) have recently gained
significant attention as a potential candidate for achieving a quantum advantage in data …

Out-of-distribution generalization for learning quantum dynamics

MC Caro, HY Huang, N Ezzell, J Gibbs… - Nature …, 2023 - nature.com
Generalization bounds are a critical tool to assess the training data requirements of
Quantum Machine Learning (QML). Recent work has established guarantees for in …

Exponential concentration and untrainability in quantum kernel methods

S Thanasilp, S Wang, M Cerezo, Z Holmes - arxiv preprint arxiv …, 2022 - arxiv.org
Kernel methods in Quantum Machine Learning (QML) have recently gained significant
attention as a potential candidate for achieving a quantum advantage in data analysis …

Understanding quantum machine learning also requires rethinking generalization

E Gil-Fuster, J Eisert, C Bravo-Prieto - Nature Communications, 2024 - nature.com
Quantum machine learning models have shown successful generalization performance
even when trained with few data. In this work, through systematic randomization …

Efficient measure for the expressivity of variational quantum algorithms

Y Du, Z Tu, X Yuan, D Tao - Physical Review Letters, 2022 - APS
The superiority of variational quantum algorithms (VQAs) such as quantum neural networks
(QNNs) and variational quantum eigensolvers (VQEs) heavily depends on the expressivity …

Learning quantum processes and Hamiltonians via the Pauli transfer matrix

MC Caro - ACM Transactions on Quantum Computing, 2024 - dl.acm.org
Learning about physical systems from quantum-enhanced experiments can outperform
learning from experiments in which only classical memory and processing are available …

Learnability of quantum neural networks

Y Du, MH Hsieh, T Liu, S You, D Tao - PRX quantum, 2021 - APS
Quantum neural network (QNN), or equivalently, the parameterized quantum circuit (PQC)
with a gradient-based classical optimizer, has been broadly applied to many experimental …