Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A review on fairness in machine learning
An increasing number of decisions regarding the daily lives of human beings are being
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
controlled by artificial intelligence and machine learning (ML) algorithms in spheres ranging …
Bias mitigation for machine learning classifiers: A comprehensive survey
This article provides a comprehensive survey of bias mitigation methods for achieving
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …
fairness in Machine Learning (ML) models. We collect a total of 341 publications concerning …
[PDF][PDF] Failures of Fairness in Automation Require a Deeper Understanding of Human-ML Augmentation.
Since machine learning (ML) systems became widely available, organizations have
considered the prospect of using ML models to increase productivity (Aghion et al. 2017) …
considered the prospect of using ML models to increase productivity (Aghion et al. 2017) …
[HTML][HTML] Evaluation and mitigation of racial bias in clinical machine learning models: sco** review
Background Racial bias is a key concern regarding the development, validation, and
implementation of machine learning (ML) models in clinical settings. Despite the potential of …
implementation of machine learning (ML) models in clinical settings. Despite the potential of …
Model multiplicity: Opportunities, concerns, and solutions
Recent scholarship has brought attention to the fact that there often exist multiple models for
a given prediction task with equal accuracy that differ in their individual-level predictions or …
a given prediction task with equal accuracy that differ in their individual-level predictions or …
In-processing modeling techniques for machine learning fairness: A survey
Machine learning models are becoming pervasive in high-stakes applications. Despite their
clear benefits in terms of performance, the models could show discrimination against …
clear benefits in terms of performance, the models could show discrimination against …
Policy advice and best practices on bias and fairness in AI
The literature addressing bias and fairness in AI models (fair-AI) is growing at a fast pace,
making it difficult for novel researchers and practitioners to have a bird's-eye view picture of …
making it difficult for novel researchers and practitioners to have a bird's-eye view picture of …
Algorithmic encoding of protected characteristics in chest X-ray disease detection models
Background It has been rightfully emphasized that the use of AI for clinical decision making
could amplify health disparities. An algorithm may encode protected characteristics, and …
could amplify health disparities. An algorithm may encode protected characteristics, and …
A comprehensive empirical study of bias mitigation methods for machine learning classifiers
Software bias is an increasingly important operational concern for software engineers. We
present a large-scale, comprehensive empirical study of 17 representative bias mitigation …
present a large-scale, comprehensive empirical study of 17 representative bias mitigation …
Fairness testing: A comprehensive survey and analysis of trends
Unfair behaviors of Machine Learning (ML) software have garnered increasing attention and
concern among software engineers. To tackle this issue, extensive research has been …
concern among software engineers. To tackle this issue, extensive research has been …