Quantum simulation for high-energy physics
It is for the first time that quantum simulation for high-energy physics (HEP) is studied in the
US decadal particle-physics community planning, and in fact until recently, this was not …
US decadal particle-physics community planning, and in fact until recently, this was not …
Tensor networks for complex quantum systems
R Orús - Nature Reviews Physics, 2019 - nature.com
Originally developed in the context of condensed-matter physics and based on
renormalization group ideas, tensor networks have been revived thanks to quantum …
renormalization group ideas, tensor networks have been revived thanks to quantum …
Simulating lattice gauge theories within quantum technologies
Lattice gauge theories, which originated from particle physics in the context of Quantum
Chromodynamics (QCD), provide an important intellectual stimulus to further develop …
Chromodynamics (QCD), provide an important intellectual stimulus to further develop …
Quantum simulation of fundamental particles and forces
Key static and dynamic properties of matter—from creation in the Big Bang to evolution into
subatomic and astrophysical environments—arise from the underlying fundamental …
subatomic and astrophysical environments—arise from the underlying fundamental …
Scalable circuits for preparing ground states on digital quantum computers: The Schwinger model vacuum on 100 qubits
The vacuum of the lattice Schwinger model is prepared on up to 100 qubits of IBM's Eagle-
processor quantum computers. A new algorithm to prepare the ground state of a gapped …
processor quantum computers. A new algorithm to prepare the ground state of a gapped …
Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator
The modern description of elementary particles, as formulated in the standard model of
particle physics, is built on gauge theories. Gauge theories implement fundamental laws of …
particle physics, is built on gauge theories. Gauge theories implement fundamental laws of …
Quantum computing for high-energy physics: State of the art and challenges
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …
natural sciences and beyond, with the potential for achieving a so-called quantum …
Standard model physics and the digital quantum revolution: thoughts about the interface
Advances in isolating, controlling and entangling quantum systems are transforming what
was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and …
was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and …
Quantum-classical computation of Schwinger model dynamics using quantum computers
We present a quantum-classical algorithm to study the dynamics of the two-spatial-site
Schwinger model on IBM's quantum computers. Using rotational symmetries, total charge …
Schwinger model on IBM's quantum computers. Using rotational symmetries, total charge …
Lattice gauge theories and string dynamics in Rydberg atom quantum simulators
Gauge theories are the cornerstone of our understanding of fundamental interactions among
elementary particles. Their properties are often probed in dynamical experiments, such as …
elementary particles. Their properties are often probed in dynamical experiments, such as …