Ising machines as hardware solvers of combinatorial optimization problems

N Mohseni, PL McMahon, T Byrnes - Nature Reviews Physics, 2022 - nature.com
Ising machines are hardware solvers that aim to find the absolute or approximate ground
states of the Ising model. The Ising model is of fundamental computational interest because …

The future of memristors: Materials engineering and neural networks

K Sun, J Chen, X Yan - Advanced Functional Materials, 2021 - Wiley Online Library
Abstract From Deep Blue to AlphaGo, artificial intelligence and machine learning are
booming, and neural networks have become the hot research direction. However, due to the …

[PDF][PDF] РЕЦЕНЗЕНТ: НГ Ярушкина

СВ Черемных - 2004 - techlibrary.ru
По нейронным сетям накоплен огромный материал, способный привести в
растерянность неискушенного читателя, пытающегося понять, что такое нейросети. С …

Machine learning-based optimal crop selection system in smart agriculture

S Rani, AK Mishra, A Kataria, S Mallik, H Qin - Scientific Reports, 2023 - nature.com
The cultivation of most crops depends upon the regional weather conditions. So, the
analysis of the agro-climatic conditions of a zone contributes significantly to deciding the …

Combinatorial optimization and reasoning with graph neural networks

Q Cappart, D Chételat, EB Khalil, A Lodi… - Journal of Machine …, 2023 - jmlr.org
Combinatorial optimization is a well-established area in operations research and computer
science. Until recently, its methods have focused on solving problem instances in isolation …

Up or down? adaptive rounding for post-training quantization

M Nagel, RA Amjad, M Van Baalen… - International …, 2020 - proceedings.mlr.press
When quantizing neural networks, assigning each floating-point weight to its nearest fixed-
point value is the predominant approach. We find that, perhaps surprisingly, this is not the …

Power-efficient combinatorial optimization using intrinsic noise in memristor Hopfield neural networks

F Cai, S Kumar, T Van Vaerenbergh, X Sheng… - Nature …, 2020 - nature.com
To tackle important combinatorial optimization problems, a variety of annealing-inspired
computing accelerators, based on several different technology platforms, have been …

Методы робастного, нейро-нечеткого и адаптивного управления

КА Пупков, НД Егупов, АИ Гаврилов, ВЮ Зверев… - 2001 - elibrary.ru
Настоящий учебник охватывает разделы теории, которые позволяют найти
подходящее управление в условиях неполного, нечеткого и неточного знания …

Attention, learn to solve routing problems!

W Kool, H Van Hoof, M Welling - arxiv preprint arxiv:1803.08475, 2018 - arxiv.org
The recently presented idea to learn heuristics for combinatorial optimization problems is
promising as it can save costly development. However, to push this idea towards practical …

Thirty years of machine learning: The road to Pareto-optimal wireless networks

J Wang, C Jiang, H Zhang, Y Ren… - … Surveys & Tutorials, 2020 - ieeexplore.ieee.org
Future wireless networks have a substantial potential in terms of supporting a broad range of
complex compelling applications both in military and civilian fields, where the users are able …