Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Dynamic mode decomposition and its variants
PJ Schmid - Annual Review of Fluid Mechanics, 2022 - annualreviews.org
Dynamic mode decomposition (DMD) is a factorization and dimensionality reduction
technique for data sequences. In its most common form, it processes high-dimensional …
technique for data sequences. In its most common form, it processes high-dimensional …
Modern Koopman theory for dynamical systems
The field of dynamical systems is being transformed by the mathematical tools and
algorithms emerging from modern computing and data science. First-principles derivations …
algorithms emerging from modern computing and data science. First-principles derivations …
Super-resolution analysis via machine learning: a survey for fluid flows
This paper surveys machine-learning-based super-resolution reconstruction for vortical
flows. Super resolution aims to find the high-resolution flow fields from low-resolution data …
flows. Super resolution aims to find the high-resolution flow fields from low-resolution data …
The transformative potential of machine learning for experiments in fluid mechanics
The field of machine learning (ML) has rapidly advanced the state of the art in many fields of
science and engineering, including experimental fluid dynamics, which is one of the original …
science and engineering, including experimental fluid dynamics, which is one of the original …
Unsupervised deep learning for super-resolution reconstruction of turbulence
Recent attempts to use deep learning for super-resolution reconstruction of turbulent flows
have used supervised learning, which requires paired data for training. This limitation …
have used supervised learning, which requires paired data for training. This limitation …
Applying machine learning to study fluid mechanics
SL Brunton - Acta Mechanica Sinica, 2021 - Springer
This paper provides a short overview of how to use machine learning to build data-driven
models in fluid mechanics. The process of machine learning is broken down into five …
models in fluid mechanics. The process of machine learning is broken down into five …
Uncertainty quantification for structural response field with ultra-high dimensions
L Cao, Y Zhao - International Journal of Mechanical Sciences, 2024 - Elsevier
The structural response field is crucial for understanding mechanical behavior, especially
under uncertain conditions. However, current uncertainty quantification predominantly …
under uncertain conditions. However, current uncertainty quantification predominantly …
The multiverse of dynamic mode decomposition algorithms
MJ Colbrook - arxiv preprint arxiv:2312.00137, 2023 - arxiv.org
Dynamic Mode Decomposition (DMD) is a popular data-driven analysis technique used to
decompose complex, nonlinear systems into a set of modes, revealing underlying patterns …
decompose complex, nonlinear systems into a set of modes, revealing underlying patterns …
Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization
Research in modern data-driven dynamical systems is typically focused on the three key
challenges of high dimensionality, unknown dynamics and nonlinearity. The dynamic mode …
challenges of high dimensionality, unknown dynamics and nonlinearity. The dynamic mode …
[HTML][HTML] Thermodynamics-informed neural network for recovering supercritical fluid thermophysical information from turbulent velocity data
Recent research has highlighted the potential of supercritical fluids under high-pressure
transcritical conditions to achieve microconfined turbulence as a result of the thermophysical …
transcritical conditions to achieve microconfined turbulence as a result of the thermophysical …