[HTML][HTML] Deep learning in optical metrology: a review

C Zuo, J Qian, S Feng, W Yin, Y Li, P Fan… - Light: Science & …, 2022 - nature.com
With the advances in scientific foundations and technological implementations, optical
metrology has become versatile problem-solving backbones in manufacturing, fundamental …

Raft: Recurrent all-pairs field transforms for optical flow

Z Teed, J Deng - Computer Vision–ECCV 2020: 16th European …, 2020 - Springer
Abstract We introduce Recurrent All-Pairs Field Transforms (RAFT), a new deep network
architecture for optical flow. RAFT extracts per-pixel features, builds multi-scale 4D …

On the synergies between machine learning and binocular stereo for depth estimation from images: a survey

M Poggi, F Tosi, K Batsos, P Mordohai… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Stereo matching is one of the longest-standing problems in computer vision with close to 40
years of studies and research. Throughout the years the paradigm has shifted from local …

Practical stereo matching via cascaded recurrent network with adaptive correlation

J Li, P Wang, P **ong, T Cai, Z Yan… - Proceedings of the …, 2022 - openaccess.thecvf.com
With the advent of convolutional neural networks, stereo matching algorithms have recently
gained tremendous progress. However, it remains a great challenge to accurately extract …

Attention concatenation volume for accurate and efficient stereo matching

G Xu, J Cheng, P Guo, X Yang - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Stereo matching is a fundamental building block for many vision and robotics applications.
An informative and concise cost volume representation is vital for stereo matching of high …

Raft-stereo: Multilevel recurrent field transforms for stereo matching

L Lipson, Z Teed, J Deng - 2021 International Conference on …, 2021 - ieeexplore.ieee.org
We introduce RAFT-Stereo, a new deep architecture for rectified stereo based on the optical
flow network RAFT [35]. We introduce multi-level convolutional GRUs, which more efficiently …

Cascade cost volume for high-resolution multi-view stereo and stereo matching

X Gu, Z Fan, S Zhu, Z Dai, F Tan… - Proceedings of the …, 2020 - openaccess.thecvf.com
The deep multi-view stereo (MVS) and stereo matching approaches generally construct 3D
cost volumes to regularize and regress the output depth or disparity. These methods are …

Unifying flow, stereo and depth estimation

H Xu, J Zhang, J Cai, H Rezatofighi… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
We present a unified formulation and model for three motion and 3D perception tasks:
optical flow, rectified stereo matching and unrectified stereo depth estimation from posed …

Hierarchical neural architecture search for deep stereo matching

X Cheng, Y Zhong, M Harandi, Y Dai… - Advances in neural …, 2020 - proceedings.neurips.cc
To reduce the human efforts in neural network design, Neural Architecture Search (NAS)
has been applied with remarkable success to various high-level vision tasks such as …

Aanet: Adaptive aggregation network for efficient stereo matching

H Xu, J Zhang - Proceedings of the IEEE/CVF conference …, 2020 - openaccess.thecvf.com
Despite the remarkable progress made by learning based stereo matching algorithms, one
key challenge remains unsolved. Current state-of-the-art stereo models are mostly based on …