Deep learning for healthcare applications based on physiological signals: A review

O Faust, Y Hagiwara, TJ Hong, OS Lih… - Computer methods and …, 2018 - Elsevier
Background and objective: We have cast the net into the ocean of knowledge to retrieve the
latest scientific research on deep learning methods for physiological signals. We found 53 …

A review of feature extraction and performance evaluation in epileptic seizure detection using EEG

P Boonyakitanont, A Lek-Uthai, K Chomtho… - … Signal Processing and …, 2020 - Elsevier
Since the manual detection of electrographic seizures in continuous electroencephalogram
(EEG) monitoring is very time-consuming and requires a trained expert, attempts to develop …

Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals

UR Acharya, SL Oh, Y Hagiwara, JH Tan… - Computers in biology and …, 2018 - Elsevier
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of
epilepsy. The EEG signal contains information about the electrical activity of the brain …

Deep learning for electromyographic hand gesture signal classification using transfer learning

U Côté-Allard, CL Fall, A Drouin… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
In recent years, deep learning algorithms have become increasingly more prominent for
their unparalleled ability to automatically learn discriminant features from large amounts of …

A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia

C Ieracitano, N Mammone, A Hussain, FC Morabito - Neural Networks, 2020 - Elsevier
Electroencephalographic (EEG) recordings generate an electrical map of the human brain
that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things …

A comparative analysis of signal processing and classification methods for different applications based on EEG signals

A Khosla, P Khandnor, T Chand - Biocybernetics and Biomedical …, 2020 - Elsevier
Electroencephalogram (EEG) measures the neuronal activities in the form of electric
currents that are generated due to the synchronized activity by a group of specialized …

Systematic review on resting‐state EEG for Alzheimer's disease diagnosis and progression assessment

R Cassani, M Estarellas, R San-Martin… - Disease …, 2018 - Wiley Online Library
Alzheimer's disease (AD) is a neurodegenerative disorder that accounts for nearly 70% of
the more than 46 million dementia cases estimated worldwide. Although there is no cure for …

Detection of epileptic seizure using pretrained deep convolutional neural network and transfer learning

HS Nogay, H Adeli - European neurology, 2021 - karger.com
Introduction: The diagnosis of epilepsy takes a certain process, depending entirely on the
attending physician. However, the human factor may cause erroneous diagnosis in the …

A new neural dynamic classification algorithm

MH Rafiei, H Adeli - IEEE transactions on neural networks and …, 2017 - ieeexplore.ieee.org
The keys for the development of an effective classification algorithm are: 1) discovering
feature spaces with large margins between clusters and close proximity of the classmates …

A multi-view deep learning framework for EEG seizure detection

Y Yuan, G Xun, K Jia, A Zhang - IEEE journal of biomedical and …, 2018 - ieeexplore.ieee.org
The recent advances in pervasive sensing technologies have enabled us to monitor and
analyze the multi-channel electroencephalogram (EEG) signals of epilepsy patients to …