The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

A comprehensive survey on community detection with deep learning

X Su, S Xue, F Liu, J Wu, J Yang, C Zhou… - … on Neural Networks …, 2022 - ieeexplore.ieee.org
Detecting a community in a network is a matter of discerning the distinct features and
connections of a group of members that are different from those in other communities. The …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Heterogeneous graph contrastive learning for recommendation

M Chen, C Huang, L **a, W Wei, Y Xu… - Proceedings of the …, 2023 - dl.acm.org
Graph Neural Networks (GNNs) have become powerful tools in modeling graph-structured
data in recommender systems. However, real-life recommendation scenarios usually involve …

Self-supervised heterogeneous graph neural network with co-contrastive learning

X Wang, N Liu, H Han, C Shi - Proceedings of the 27th ACM SIGKDD …, 2021 - dl.acm.org
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown
superior capacity of dealing with heterogeneous information network (HIN). However, most …

Llmrec: Large language models with graph augmentation for recommendation

W Wei, X Ren, J Tang, Q Wang, L Su, S Cheng… - Proceedings of the 17th …, 2024 - dl.acm.org
The problem of data sparsity has long been a challenge in recommendation systems, and
previous studies have attempted to address this issue by incorporating side information …

Are we really making much progress? revisiting, benchmarking and refining heterogeneous graph neural networks

Q Lv, M Ding, Q Liu, Y Chen, W Feng, S He… - Proceedings of the 27th …, 2021 - dl.acm.org
Heterogeneous graph neural networks (HGNNs) have been blossoming in recent years, but
the unique data processing and evaluation setups used by each work obstruct a full …

A survey on heterogeneous graph embedding: methods, techniques, applications and sources

X Wang, D Bo, C Shi, S Fan, Y Ye… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Heterogeneous graphs (HGs) also known as heterogeneous information networks have
become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn …

[HTML][HTML] Graph neural networks: A review of methods and applications

J Zhou, G Cui, S Hu, Z Zhang, C Yang, Z Liu, L Wang… - AI open, 2020 - Elsevier
Lots of learning tasks require dealing with graph data which contains rich relation
information among elements. Modeling physics systems, learning molecular fingerprints …

Heterogeneous graph structure learning for graph neural networks

J Zhao, X Wang, C Shi, B Hu, G Song… - Proceedings of the AAAI …, 2021 - ojs.aaai.org
Abstract Heterogeneous Graph Neural Networks (HGNNs) have drawn increasing attention
in recent years and achieved outstanding performance in many tasks. The success of the …